Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Copyright (c) 2022 Microsoft | |
# Modified from | |
# https://github.com/microsoft/unilm/blob/master/beit2/norm_ema_quantizer.py | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from mmengine.dist import all_reduce | |
def ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, | |
decay: torch.Tensor) -> None: | |
"""Update moving average.""" | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
def norm_ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, | |
decay: torch.Tensor) -> None: | |
"""Update moving average with norm data.""" | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
moving_avg.data.copy_(F.normalize(moving_avg.data, p=2, dim=-1)) | |
def sample_vectors(samples: torch.Tensor, num: int) -> torch.Tensor: | |
"""Sample vectors according to the given number.""" | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device=device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num, ), device=device) | |
return samples[indices] | |
def kmeans(samples: torch.Tensor, | |
num_clusters: int, | |
num_iters: int = 10, | |
use_cosine_sim: bool = False) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Run k-means algorithm.""" | |
dim, dtype, _ = samples.shape[-1], samples.dtype, samples.device | |
means = sample_vectors(samples, num_clusters) | |
for _ in range(num_iters): | |
if use_cosine_sim: | |
dists = samples @ means.t() | |
else: | |
diffs = rearrange(samples, 'n d -> n () d') \ | |
- rearrange(means, 'c d -> () c d') | |
dists = -(diffs**2).sum(dim=-1) | |
buckets = dists.max(dim=-1).indices | |
bins = torch.bincount(buckets, minlength=num_clusters) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples) | |
new_means = new_means / bins_min_clamped[..., None] | |
if use_cosine_sim: | |
new_means = F.normalize(new_means, p=2, dim=-1) | |
means = torch.where(zero_mask[..., None], means, new_means) | |
return means, bins | |
class EmbeddingEMA(nn.Module): | |
"""The codebook of embedding vectors. | |
Args: | |
num_tokens (int): Number of embedding vectors in the codebook. | |
codebook_dim (int) : The dimension of embedding vectors in the | |
codebook. | |
kmeans_init (bool): Whether to use k-means to initialize the | |
VectorQuantizer. Defaults to True. | |
codebook_init_path (str): The initialization checkpoint for codebook. | |
Defaults to None. | |
""" | |
def __init__(self, | |
num_tokens: int, | |
codebook_dim: int, | |
kmeans_init: bool = True, | |
codebook_init_path: Optional[str] = None): | |
super().__init__() | |
self.num_tokens = num_tokens | |
self.codebook_dim = codebook_dim | |
if codebook_init_path is None: | |
if not kmeans_init: | |
weight = torch.randn(num_tokens, codebook_dim) | |
weight = F.normalize(weight, p=2, dim=-1) | |
else: | |
weight = torch.zeros(num_tokens, codebook_dim) | |
self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
else: | |
print(f'load init codebook weight from {codebook_init_path}') | |
codebook_ckpt_weight = torch.load( | |
codebook_init_path, map_location='cpu') | |
weight = codebook_ckpt_weight.clone() | |
self.register_buffer('initted', torch.Tensor([True])) | |
self.weight = nn.Parameter(weight, requires_grad=False) | |
self.update = True | |
def init_embed_(self, data: torch.Tensor) -> None: | |
"""Initialize embedding vectors of codebook.""" | |
if self.initted: | |
return | |
print('Performing K-means init for codebook') | |
embed, _ = kmeans(data, self.num_tokens, 10, use_cosine_sim=True) | |
self.weight.data.copy_(embed) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def forward(self, embed_id: torch.Tensor) -> torch.Tensor: | |
"""Get embedding vectors.""" | |
return F.embedding(embed_id, self.weight) | |
class NormEMAVectorQuantizer(nn.Module): | |
"""Normed EMA vector quantizer module. | |
Args: | |
num_embed (int): Number of embedding vectors in the codebook. Defaults | |
to 8192. | |
embed_dims (int) : The dimension of embedding vectors in the codebook. | |
Defaults to 32. | |
beta (float): The mutiplier for VectorQuantizer embedding loss. | |
Defaults to 1. | |
decay (float): The decay parameter of EMA. Defaults to 0.99. | |
statistic_code_usage (bool): Whether to use cluster_size to record | |
statistic. Defaults to True. | |
kmeans_init (bool): Whether to use k-means to initialize the | |
VectorQuantizer. Defaults to True. | |
codebook_init_path (str): The initialization checkpoint for codebook. | |
Defaults to None. | |
""" | |
def __init__(self, | |
num_embed: int, | |
embed_dims: int, | |
beta: float, | |
decay: float = 0.99, | |
statistic_code_usage: bool = True, | |
kmeans_init: bool = True, | |
codebook_init_path: Optional[str] = None) -> None: | |
super().__init__() | |
self.codebook_dim = embed_dims | |
self.num_tokens = num_embed | |
self.beta = beta | |
self.decay = decay | |
# learnable = True if orthogonal_reg_weight > 0 else False | |
self.embedding = EmbeddingEMA( | |
num_tokens=self.num_tokens, | |
codebook_dim=self.codebook_dim, | |
kmeans_init=kmeans_init, | |
codebook_init_path=codebook_init_path) | |
self.statistic_code_usage = statistic_code_usage | |
if statistic_code_usage: | |
self.register_buffer('cluster_size', torch.zeros(num_embed)) | |
def reset_cluster_size(self, device): | |
if self.statistic_code_usage: | |
self.register_buffer('cluster_size', torch.zeros(self.num_tokens)) | |
self.cluster_size = self.cluster_size.to(device) | |
def forward(self, z): | |
"""Forward function.""" | |
# reshape z -> (batch, height, width, channel) | |
z = rearrange(z, 'b c h w -> b h w c') | |
z = F.normalize(z, p=2, dim=-1) | |
z_flattened = z.reshape(-1, self.codebook_dim) | |
self.embedding.init_embed_(z_flattened) | |
# 'n d -> d n' | |
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ | |
self.embedding.weight.pow(2).sum(dim=1) - 2 * \ | |
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) | |
encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(encoding_indices).view(z.shape) | |
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) | |
if not self.training: | |
with torch.no_grad(): | |
cluster_size = encodings.sum(0) | |
all_reduce(cluster_size) | |
ema_inplace(self.cluster_size, cluster_size, self.decay) | |
if self.training and self.embedding.update: | |
# update cluster size with EMA | |
bins = encodings.sum(0) | |
all_reduce(bins) | |
ema_inplace(self.cluster_size, bins, self.decay) | |
zero_mask = (bins == 0) | |
bins = bins.masked_fill(zero_mask, 1.) | |
embed_sum = z_flattened.t() @ encodings | |
all_reduce(embed_sum) | |
embed_normalized = (embed_sum / bins.unsqueeze(0)).t() | |
embed_normalized = F.normalize(embed_normalized, p=2, dim=-1) | |
embed_normalized = torch.where(zero_mask[..., None], | |
self.embedding.weight, | |
embed_normalized) | |
# Update embedding vectors with EMA | |
norm_ema_inplace(self.embedding.weight, embed_normalized, | |
self.decay) | |
# compute loss for embedding | |
loss = self.beta * F.mse_loss(z_q.detach(), z) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
z_q = rearrange(z_q, 'b h w c -> b c h w') | |
return z_q, loss, encoding_indices | |