HumanSD / mmpretrain /models /utils /clip_generator_helper.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/zejiangh/MILAN
from collections import OrderedDict
from typing import Optional, Tuple, Union
import numpy as np
import torch
from mmengine.logging import MMLogger
from torch import nn
from mmpretrain.registry import MODELS
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
@MODELS.register_module()
class QuickGELU(nn.Module):
"""A faster version of GELU."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
"""Residual Attention Block (RAB).
This module implements the same function as the MultiheadAttention,
but with a different interface, which is mainly used
in CLIP.
Args:
d_model (int): The feature dimension.
n_head (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
Defaults to None.
"""
def __init__(self,
d_model: int,
n_head: int,
attn_mask: Optional[torch.Tensor] = None,
return_attention: bool = False) -> None:
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
('gelu', QuickGELU()),
('c_proj', nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.return_attention = return_attention
def attention(self, x: torch.Tensor) -> torch.Tensor:
"""Attention function."""
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
if self.return_attention:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)
else:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)[0]
def forward(
self, x: torch.Tensor
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward function."""
if self.return_attention:
x_, attention = self.attention(self.ln_1(x))
x = x + x_
x = x + self.mlp(self.ln_2(x))
return x, attention
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
"""Transformer.
Both visual and text branches use this transformer.
Args:
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
"""
def __init__(self,
width: int,
layers: int,
heads: int,
attn_mask: Optional[torch.Tensor] = None) -> None:
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList()
for _ in range(layers - 1):
self.resblocks.append(
ResidualAttentionBlock(width, heads, attn_mask))
self.resblocks.append(
ResidualAttentionBlock(
width, heads, attn_mask, return_attention=True))
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward function."""
z = []
for idx, blk in enumerate(self.resblocks):
if idx < self.layers - 1:
x = blk(x)
z.append(x.permute(1, 0, 2))
else:
x, attention = blk(x)
z.append(x.permute(1, 0, 2))
return x, attention, z
class VisionTransformer(nn.Module):
"""Vision Transformer for CLIP.
Args:
input_resolution (int): The image size.
patch_size (int): The patch size.
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
out_dim (int): The output dimension.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
finetune=False,
average_targets: int = 1) -> None:
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size)**2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.finetune = finetune
if finetune is False:
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.average_targets = average_targets
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function."""
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([
self.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x, attention, z = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x, attention
class CLIP(nn.Module):
"""CLIP.
Args:
embed_dim (int): The embedding dimension.
image_resolution (int): The image size.
vision_layers (int): The number of layers in the vision transformer.
vision_width (int): The feature dimension in the vision transformer.
vision_patch_size (int): The patch size in the vision transformer.
context_length (int): The context length.
vocab_size (int): The vocabulary size.
transformer_width (int): The feature dimension in the text transformer.
transformer_heads (int): The number of attention heads in the
text transformer.
transformer_layers (int): The number of layers in the text transformer.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(
self,
embed_dim: int,
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
finetune: bool = False,
average_targets: int = 1,
) -> None:
super().__init__()
self.context_length = context_length
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
finetune=finetune,
average_targets=average_targets,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self) -> None:
"""Initialize the parameters.
The pretrained weight will override the initialized parameters by this
function.
"""
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(
self.text_projection, std=self.transformer.width**-0.5)
def build_attention_mask(self) -> torch.Tensor:
"""Build the attention mask."""
# lazily create causal attention mask, with full attention between the
# vision tokens pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self) -> torch.dtype:
"""Get the dtype."""
return self.visual.conv1.weight.dtype
def encode_image(self,
image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode the image.
Get the feature and attention mask from the last layer of the visual
branch of CLIP.
Args:
image (torch.Tensor): The image tensor with shape NCHW.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask.
"""
return self.visual(image.type(self.dtype))
def build_clip_model(state_dict: dict,
finetune: bool = False,
average_targets: int = 1) -> nn.Module:
"""Build the CLIP model.
Args:
state_dict (dict): The pretrained state dict.
finetune (bool): Whether to fineturn the model.
average_targets (bool): Whether to average the target.
Returns:
nn.Module: The CLIP model.
"""
vit = 'visual.proj' in state_dict
if vit:
vision_width = state_dict['visual.conv1.weight'].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith('visual.') and k.endswith('.attn.in_proj_weight')
])
vision_patch_size = state_dict['visual.conv1.weight'].shape[-1]
grid_size = round(
(state_dict['visual.positional_embedding'].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
embed_dim = state_dict['text_projection'].shape[1]
context_length = state_dict['positional_embedding'].shape[0]
vocab_size = state_dict['token_embedding.weight'].shape[0]
transformer_width = state_dict['ln_final.weight'].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split('.')[2] for k in state_dict
if k.startswith('transformer.resblocks')))
model = CLIP(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
finetune,
average_targets,
)
for key in ['input_resolution', 'context_length', 'vocab_size']:
if key in state_dict:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
MMLogger.get_current_instance().info(f'Load CLIP model: {msg}')
return model.eval()