Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn.bricks import DropPath | |
from mmengine.model.weight_init import trunc_normal_ | |
from mmpretrain.registry import MODELS | |
from ..utils import build_norm_layer, to_2tuple | |
from .base_backbone import BaseBackbone | |
class Mlp(nn.Module): | |
"""MLP block. | |
Args: | |
in_features (int): Number of input dims. | |
hidden_features (int): Number of hidden dims. | |
out_feature (int): Number of out dims. | |
act_layer: MLP activation layer. | |
drop (float): MLP dropout rate. | |
""" | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
"""Attention. | |
Args: | |
input size (int): Input size. | |
dim (int): Number of input dims. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool): Enable bias for qkv projections if True. | |
qk_scale (float): The number of divider after q@k. Default to None. | |
attn_drop (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
proj_drop (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
rpe (bool): If True, add relative position embedding to | |
the patch embedding. | |
""" | |
def __init__(self, | |
input_size, | |
dim, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0., | |
proj_drop=0., | |
rpe=True): | |
super().__init__() | |
self.input_size = input_size | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * input_size - 1) * | |
(2 * input_size - 1), num_heads)) if rpe else None | |
if rpe: | |
coords_h = torch.arange(input_size) | |
coords_w = torch.arange(input_size) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, | |
None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += input_size - 1 | |
relative_coords[:, :, 1] += input_size - 1 | |
relative_coords[:, :, 0] *= 2 * input_size - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer('relative_position_index', | |
relative_position_index) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, rpe_index=None, mask=None): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, | |
C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[ | |
2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if rpe_index is not None: | |
rpe_index = self.relative_position_index.view(-1) | |
S = int(math.sqrt(rpe_index.size(-1))) | |
relative_position_bias = self.relative_position_bias_table[ | |
rpe_index].view(-1, S, S, self.num_heads) | |
relative_position_bias = relative_position_bias.permute( | |
0, 3, 1, 2).contiguous() | |
attn = attn + relative_position_bias | |
if mask is not None: | |
mask = mask.bool() | |
attn = attn.masked_fill(~mask[:, None, None, :], float('-inf')) | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class BlockWithRPE(nn.Module): | |
"""HiViT block. | |
Args: | |
input_size (int): Input size. | |
dim (int): Number of input dims. | |
num_heads (int): Number of attention heads. | |
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim. | |
qkv_bias (bool): Enable bias for qkv projections if True. | |
qk_scale (float): The number of divider after q@k. Default to None. | |
drop (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
attn_drop (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
drop_path (float): Stochastic depth rate. Defaults to 0. | |
rpe (bool): If True, add relative position embedding to | |
the patch embedding. | |
layer_scale_init_value (float): Layer-scale init values. Defaults to 0. | |
act_layer: MLP activation layer. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
""" | |
def __init__(self, | |
input_size, | |
dim, | |
num_heads=0., | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
rpe=True, | |
layer_scale_init_value=0.0, | |
act_layer=nn.GELU, | |
norm_cfg=dict(type='LN')): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.mlp_ratio = mlp_ratio | |
with_attn = num_heads > 0. | |
self.norm1 = build_norm_layer(norm_cfg, dim) if with_attn else None | |
self.attn = Attention( | |
input_size, | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
rpe=rpe, | |
) if with_attn else None | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = build_norm_layer(norm_cfg, dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
if layer_scale_init_value > 0: | |
self.gamma_1 = nn.Parameter( | |
layer_scale_init_value * torch.ones( | |
(dim)), requires_grad=True) if with_attn else None | |
self.gamma_2 = nn.Parameter( | |
layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x, rpe_index=None, mask=None): | |
if self.attn is not None: | |
if self.gamma_1 is not None: | |
x = x + self.drop_path( | |
self.gamma_1 * self.attn(self.norm1(x), rpe_index, mask)) | |
else: | |
x = x + self.drop_path( | |
self.attn(self.norm1(x), rpe_index, mask)) | |
if self.gamma_2 is not None: | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""PatchEmbed for HiViT. | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. Defaults to 16. | |
inner_patches (int): Inner patch. Defaults to 4. | |
in_chans (int): Number of image input channels. | |
embed_dim (int): Transformer embedding dimension. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
kernel_size (int): Kernel size. | |
pad_size (int): Pad size. | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
inner_patches=4, | |
in_chans=3, | |
embed_dim=128, | |
norm_cfg=None, | |
kernel_size=None, | |
pad_size=None): | |
super().__init__() | |
img_size = to_2tuple(img_size) if not isinstance(img_size, | |
tuple) else img_size | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.inner_patches = inner_patches | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
conv_size = [size // inner_patches for size in patch_size] | |
kernel_size = kernel_size or conv_size | |
pad_size = pad_size or 0 | |
self.proj = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=kernel_size, | |
stride=conv_size, | |
padding=pad_size) | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
B, C, H, W = x.shape | |
patches_resolution = (H // self.patch_size[0], W // self.patch_size[1]) | |
num_patches = patches_resolution[0] * patches_resolution[1] | |
x = self.proj(x).view( | |
B, | |
-1, | |
patches_resolution[0], | |
self.inner_patches, | |
patches_resolution[1], | |
self.inner_patches, | |
).permute(0, 2, 4, 3, 5, 1).reshape(B, num_patches, self.inner_patches, | |
self.inner_patches, -1) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
class PatchMerge(nn.Module): | |
"""PatchMerge for HiViT. | |
Args: | |
dim (int): Number of input channels. | |
norm_cfg (dict): Config dict for normalization layer. | |
""" | |
def __init__(self, dim, norm_cfg): | |
super().__init__() | |
self.norm = build_norm_layer(norm_cfg, dim * 4) | |
self.reduction = nn.Linear(dim * 4, dim * 2, bias=False) | |
def forward(self, x, *args, **kwargs): | |
is_main_stage = len(x.shape) == 3 | |
if is_main_stage: | |
B, N, C = x.shape | |
S = int(math.sqrt(N)) | |
x = x.reshape(B, S // 2, 2, S // 2, 2, C) \ | |
.permute(0, 1, 3, 2, 4, 5) \ | |
.reshape(B, -1, 2, 2, C) | |
x0 = x[..., 0::2, 0::2, :] | |
x1 = x[..., 1::2, 0::2, :] | |
x2 = x[..., 0::2, 1::2, :] | |
x3 = x[..., 1::2, 1::2, :] | |
x = torch.cat([x0, x1, x2, x3], dim=-1) | |
x = self.norm(x) | |
x = self.reduction(x) | |
if is_main_stage: | |
x = x[:, :, 0, 0, :] | |
return x | |
class HiViT(BaseBackbone): | |
"""HiViT. | |
A PyTorch implement of: `HiViT: A Simple and More Efficient Design | |
of Hierarchical Vision Transformer <https://arxiv.org/abs/2205.14949>`_. | |
Args: | |
arch (str | dict): Swin Transformer architecture. If use string, choose | |
from 'tiny', 'small', and'base'. If use dict, it should | |
have below keys: | |
- **embed_dims** (int): The dimensions of embedding. | |
- **depths** (List[int]): The number of blocks in each stage. | |
- **num_heads** (int): The number of heads in attention | |
modules of each stage. | |
Defaults to 'tiny'. | |
img_size (int): Input image size. | |
patch_size (int): Patch size. Defaults to 16. | |
inner_patches (int): Inner patch. Defaults to 4. | |
in_chans (int): Number of image input channels. | |
embed_dim (int): Transformer embedding dimension. | |
depths (list[int]): Number of successive HiViT blocks. | |
num_heads (int): Number of attention heads. | |
stem_mlp_ratio (int): Ratio of MLP hidden dim to embedding dim | |
in the first two stages. | |
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim in | |
the last stage. | |
qkv_bias (bool): Enable bias for qkv projections if True. | |
qk_scale (float): The number of divider after q@k. Default to None. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0. | |
attn_drop_rate (float): The drop out rate for attention output weights. | |
Defaults to 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
ape (bool): If True, add absolute position embedding to | |
the patch embedding. | |
rpe (bool): If True, add relative position embedding to | |
the patch embedding. | |
patch_norm (bool): If True, use norm_cfg for normalization layer. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
kernel_size (int): Kernel size. | |
pad_size (int): Pad size. | |
layer_scale_init_value (float): Layer-scale init values. Defaults to 0. | |
init_cfg (dict, optional): The extra config for initialization. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys(['t', 'tiny'], | |
{'embed_dims': 384, | |
'depths': [1, 1, 10], | |
'num_heads': 6}), | |
**dict.fromkeys(['s', 'small'], | |
{'embed_dims': 384, | |
'depths': [2, 2, 20], | |
'num_heads': 6}), | |
**dict.fromkeys(['b', 'base'], | |
{'embed_dims': 512, | |
'depths': [2, 2, 24], | |
'num_heads': 8}), | |
**dict.fromkeys(['l', 'large'], | |
{'embed_dims': 768, | |
'depths': [2, 2, 40], | |
'num_heads': 12}), | |
} # yapf: disable | |
num_extra_tokens = 0 | |
def __init__(self, | |
arch='base', | |
img_size=224, | |
patch_size=16, | |
inner_patches=4, | |
in_chans=3, | |
stem_mlp_ratio=3., | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0.0, | |
norm_cfg=dict(type='LN'), | |
out_indices=[23], | |
ape=True, | |
rpe=False, | |
patch_norm=True, | |
frozen_stages=-1, | |
kernel_size=None, | |
pad_size=None, | |
layer_scale_init_value=0.0, | |
init_cfg=None): | |
super(HiViT, self).__init__(init_cfg=init_cfg) | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = {'embed_dims', 'depths', 'num_heads'} | |
assert isinstance(arch, dict) and set(arch) == essential_keys, \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.embed_dims = self.arch_settings['embed_dims'] | |
self.depths = self.arch_settings['depths'] | |
self.num_heads = self.arch_settings['num_heads'] | |
self.num_stages = len(self.depths) | |
self.ape = ape | |
self.rpe = rpe | |
self.patch_size = patch_size | |
self.num_features = self.embed_dims | |
self.mlp_ratio = mlp_ratio | |
self.num_main_blocks = self.depths[-1] | |
self.out_indices = out_indices | |
self.out_indices[-1] = self.depths[-1] - 1 | |
img_size = to_2tuple(img_size) if not isinstance(img_size, | |
tuple) else img_size | |
embed_dim = self.embed_dims // 2**(self.num_stages - 1) | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
inner_patches=inner_patches, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
norm_cfg=norm_cfg if patch_norm else None, | |
kernel_size=kernel_size, | |
pad_size=pad_size) | |
num_patches = self.patch_embed.num_patches | |
Hp, Wp = self.patch_embed.patches_resolution | |
if rpe: | |
assert Hp == Wp, 'If you use relative position, make sure H == W ' | |
'of input size' | |
# absolute position embedding | |
if ape: | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, self.num_features)) | |
trunc_normal_(self.pos_embed, std=.02) | |
if rpe: | |
# get pair-wise relative position index for each token inside the | |
# window | |
coords_h = torch.arange(Hp) | |
coords_w = torch.arange(Wp) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, | |
None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += Hp - 1 | |
relative_coords[:, :, 1] += Wp - 1 | |
relative_coords[:, :, 0] *= 2 * Wp - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer('relative_position_index', | |
relative_position_index) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = iter( | |
x.item() | |
for x in torch.linspace(0, drop_path_rate, | |
sum(self.depths) + sum(self.depths[:-1]))) | |
# build blocks | |
self.blocks = nn.ModuleList() | |
for stage_i, stage_depth in enumerate(self.depths): | |
is_main_stage = embed_dim == self.num_features | |
nhead = self.num_heads if is_main_stage else 0 | |
ratio = mlp_ratio if is_main_stage else stem_mlp_ratio | |
# every block not in main stage includes two mlp blocks | |
stage_depth = stage_depth if is_main_stage else stage_depth * 2 | |
for _ in range(stage_depth): | |
self.blocks.append( | |
BlockWithRPE( | |
Hp, | |
embed_dim, | |
nhead, | |
ratio, | |
qkv_bias, | |
qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=next(dpr), | |
rpe=rpe, | |
norm_cfg=norm_cfg, | |
layer_scale_init_value=layer_scale_init_value, | |
)) | |
if stage_i + 1 < self.num_stages: | |
self.blocks.append(PatchMerge(embed_dim, norm_cfg)) | |
embed_dim *= 2 | |
self.frozen_stages = frozen_stages | |
if self.frozen_stages > 0: | |
self._freeze_stages() | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def interpolate_pos_encoding(self, x, h, w): | |
npatch = x.shape[1] | |
N = self.pos_embed.shape[1] | |
if npatch == N and w == h: | |
return self.pos_embed | |
patch_pos_embed = self.pos_embed | |
dim = x.shape[-1] | |
w0 = w // self.patch_size | |
h0 = h // self.patch_size | |
# we add a small number to avoid floating point error in interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), | |
dim).permute(0, 3, 1, 2), | |
scale_factor=(h0 / math.sqrt(N), w0 / math.sqrt(N)), | |
mode='bicubic', | |
) | |
assert int(h0) == patch_pos_embed.shape[-2] and int( | |
w0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return patch_pos_embed | |
def forward(self, x): | |
B, C, H, W = x.shape | |
Hp, Wp = H // self.patch_size, W // self.patch_size | |
x = self.patch_embed(x) | |
outs = [] | |
for i, blk in enumerate(self.blocks[:-self.num_main_blocks]): | |
x = blk(x) | |
if i in self.out_indices: | |
x = x.reshape(B, Hp, Wp, *x.shape[-3:]).permute( | |
0, 5, 1, 3, 2, 4).reshape(B, -1, Hp * x.shape[-3], | |
Wp * x.shape[-2]).contiguous() | |
outs.append(x) | |
x = x[..., 0, 0, :] | |
if self.ape: | |
x = x + self.interpolate_pos_encoding(x, H, W) | |
x = self.pos_drop(x) | |
rpe_index = True if self.rpe else None | |
for i, blk in enumerate(self.blocks[-self.num_main_blocks:]): | |
x = blk(x, rpe_index) | |
if i in self.out_indices: | |
x = x.transpose(1, 2).view(B, -1, Hp, Wp).contiguous() | |
outs.append(x) | |
return tuple(outs) | |
def _freeze_stages(self): | |
# freeze position embedding | |
if self.pos_embed is not None: | |
self.pos_embed.requires_grad = False | |
# set dropout to eval model | |
self.pos_drop.eval() | |
# freeze patch embedding | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
# freeze layers | |
for i in range(1, self.frozen_stages + 1): | |
m = self.blocks[i - 1] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
# freeze the last layer norm | |
for param in self.fc_norm.parameters(): | |
param.requires_grad = False | |
def get_layer_depth(self, param_name: str, prefix: str = ''): | |
"""Get the layer-wise depth of a parameter. | |
Args: | |
param_name (str): The name of the parameter. | |
prefix (str): The prefix for the parameter. | |
Defaults to an empty string. | |
Returns: | |
Tuple[int, int]: The layer-wise depth and the num of layers. | |
Note: | |
The first depth is the stem module (``layer_depth=0``), and the | |
last depth is the subsequent module (``layer_depth=num_layers-1``) | |
""" | |
self.num_layers = len(self.blocks) | |
num_layers = self.num_layers + 2 | |
if not param_name.startswith(prefix): | |
# For subsequent module like head | |
return num_layers - 1, num_layers | |
param_name = param_name[len(prefix):] | |
if param_name in 'pos_embed': | |
layer_depth = 0 | |
elif param_name.startswith('patch_embed'): | |
layer_depth = 0 | |
elif param_name.startswith('layers'): | |
layer_id = int(param_name.split('.')[1]) | |
layer_depth = layer_id + 1 | |
else: | |
layer_depth = num_layers - 1 | |
return layer_depth, num_layers | |