Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import torch.nn as nn | |
from transformers import ( | |
CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, | |
SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig | |
) | |
from .beats.BEATs import BEATsConfig, BEATs | |
class CLIPVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = args.mm_vision_select_layer | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) | |
def load_model(self): | |
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features[:, 1:] | |
elif self.select_feature == 'cls_patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def image_size(self): | |
return self.config.image_size | |
class SiglipVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = args.mm_vision_select_layer | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) | |
def load_model(self): | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def image_size(self): | |
return self.config.image_size | |
def build_vision_tower(vision_tower_cfg, **kwargs): | |
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) | |
if 'clip' in vision_tower: | |
vision_tower = CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) | |
elif 'siglip' in vision_tower: | |
vision_tower = SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) | |
else: | |
raise ValueError(f'Unknown vision tower: {vision_tower}') | |
#print(vision_tower) | |
return vision_tower | |
def build_audio_tower(audio_tower_cfg, delay_load=False, **kwargs): | |
audio_tower = getattr(audio_tower_cfg, 'mm_audio_tower', getattr(audio_tower_cfg, 'audio_tower', None)) | |
if not delay_load: | |
beats_checkpoint = torch.load(audio_tower, map_location='cpu') | |
if 'cfg' in beats_checkpoint: | |
beats_cfg = BEATsConfig(beats_checkpoint['cfg']) | |
else: | |
beats_cfg = BEATsConfig() | |
beats = BEATs(beats_cfg) | |
if not audio_tower.endswith('.bin'): | |
print(beats.load_state_dict(beats_checkpoint['model'])) | |
else: | |
filtered_checkpoint = {} | |
prefix = 'model.audio_tower.' | |
for key, value in beats_checkpoint.items(): | |
if key.startswith(prefix): | |
new_key = key[len(prefix):] # 去除前缀 | |
filtered_checkpoint[new_key] = value | |
print(beats.load_state_dict(filtered_checkpoint, strict=False)) | |
else: | |
beats_cfg = BEATsConfig() | |
beats = BEATs(beats_cfg) | |
return beats, beats_cfg | |