Spaces:
Running
on
Zero
Running
on
Zero
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import warnings | |
import shutil | |
import torch | |
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
from .projector import load_mm_projector | |
from .videollama2_llama import Videollama2LlamaForCausalLM, Videollama2LlamaConfig | |
from .videollama2_mistral import Videollama2MistralForCausalLM, Videollama2MistralConfig | |
from .videollama2_mixtral import Videollama2MixtralForCausalLM, Videollama2MixtralConfig | |
from .videollama2_qwen2 import Videollama2Qwen2ForCausalLM, Videollama2Qwen2Config | |
from .videollama2_gemma2 import Videollama2Gemma2ForCausalLM, Videollama2Gemma2Config | |
from .videollama2_phi3 import Videollama2Phi3ForCausalLM, Videollama2Phi3Config | |
VLLMs = { | |
"videollama2": Videollama2MistralForCausalLM, | |
"videollama2_llama": Videollama2LlamaForCausalLM, | |
"videollama2_mistral": Videollama2MistralForCausalLM, | |
"videollama2_mixtral": Videollama2MixtralForCausalLM, | |
"videollama2_qwen2": Videollama2Qwen2ForCausalLM, | |
"videollama2_gemma2": Videollama2Gemma2ForCausalLM, | |
"videollama2_phi3": Videollama2Phi3ForCausalLM, | |
} | |
VLLMConfigs = { | |
"videollama2": Videollama2MistralConfig, | |
"videollama2_llama": Videollama2LlamaConfig, | |
"videollama2_mistral": Videollama2MistralConfig, | |
"videollama2_mixtral": Videollama2MixtralConfig, | |
"videollama2_qwen2": Videollama2Qwen2Config, | |
"videollama2_gemma2": Videollama2Gemma2Config, | |
"videollama2_phi3": Videollama2Phi3Config, | |
} | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): | |
if 'token' in kwargs: | |
token = kwargs['token'] | |
else: | |
token = None | |
kwargs = {"device_map": device_map, **kwargs} | |
if device != "cuda": | |
kwargs['device_map'] = {"": device} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time.""" | |
# kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if use_flash_attn: | |
kwargs['attn_implementation'] = 'flash_attention_2' | |
config = AutoConfig.from_pretrained(model_path) | |
# judge model type | |
model_type = config.model_type | |
# judge pretrain/finetune | |
try: | |
is_pretraining = config.tune_mm_mlp_adapter | |
except: | |
is_pretraining = False | |
# NOTE: lora/qlora model loading | |
if 'lora' in model_name.lower() or 'qlora' in model_name.lower(): | |
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) | |
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None. | |
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token) | |
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path | |
# NOTE: remove qlora training quantization config | |
if hasattr(lora_cfg_pretrained, 'quantization_config'): | |
del lora_cfg_pretrained.quantization_config | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) | |
print('Loading VideoLLaMA from base model...') | |
if 'vicuna' in model_base.lower(): | |
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif 'mistral' in model_base.lower(): | |
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
else: | |
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
print('Loading additional VideoLLaMA weights...') | |
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | |
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder) | |
return torch.load(cache_file, map_location='cpu') | |
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | |
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} | |
if any(k.startswith('model.model.') for k in non_lora_trainables): | |
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print('Loading LoRA weights...') | |
model = PeftModel.from_pretrained(model, model_path) | |
print('Merging LoRA weights...') | |
model = model.merge_and_unload() | |
print('Model is loaded...') | |
elif model_base is not None or '-base' in model_name.lower() or is_pretraining: | |
# NOTE: Base/Pretrain model loading | |
print('Loading VideoLLaMA 2 from base model...') | |
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) | |
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None. | |
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token) | |
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) | |
if model_type in ['videollama2', 'videollama2_mistral']: | |
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_mixtral']: | |
model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_qwen2']: | |
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_gemma2']: | |
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_phi3']: | |
model = Videollama2Phi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
else: | |
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
# NOTE; loading vision-language projector | |
# * old codes for loading local mm_projector.bin | |
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | |
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
# model.load_state_dict(mm_projector_weights, strict=False) | |
# * new codes which supports loading mm_projector.bin both offline and online | |
mm_projector_weights = load_mm_projector(model_path, token=token) | |
model.load_state_dict(mm_projector_weights, strict=False) | |
elif 'videollama2' in model_type: | |
# NOTE: SFT model loading | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token) | |
if model_type in ['videollama2', 'videollama2_mistral']: | |
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_mixtral']: | |
model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_qwen2']: | |
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_gemma2']: | |
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
elif model_type in ['videollama2_phi3']: | |
model = Videollama2Phi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
else: | |
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token) | |
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs) | |
processor = None | |
if "videollama" in model_type: | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
vision_tower.to(device=device, dtype=torch.float16) | |
# NOTE: videollama2 adopts the same processor for processing image and video. | |
processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, processor, context_len | |