Spaces:
Runtime error
Runtime error
from functools import partial | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import torch | |
import os | |
import fire | |
from ldm.util import add_margin | |
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a> | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a> | |
</div> | |
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss''' | |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given." | |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider." | |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button." | |
def mask_prediction(mask_predictor, image_in: Image.Image): | |
if image_in.mode=='RGBA': | |
return image_in | |
else: | |
raise NotImplementedError | |
def resize_inputs(image_input, crop_size): | |
alpha_np = np.asarray(image_input)[:, :, 3] | |
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] | |
min_x, min_y = np.min(coords, 0) | |
max_x, max_y = np.max(coords, 0) | |
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) | |
h, w = ref_img_.height, ref_img_.width | |
scale = crop_size / max(h, w) | |
h_, w_ = int(scale * h), int(scale * w) | |
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC) | |
results = add_margin(ref_img_, size=256) | |
return results | |
def run_demo(): | |
device = f"cuda:0" if torch.cuda.is_available() else "cpu" | |
models = None # init_model(device, os.path.join(code_dir, ckpt)) | |
# init sam model | |
mask_predictor = None # sam_init(device_idx) | |
# with open('instructions_12345.md', 'r') as f: | |
# article = f.read() | |
# NOTE: Examples must match inputs | |
example_folder = os.path.join(os.path.dirname(__file__), 'hf_demo', 'examples') | |
example_fns = os.listdir(example_folder) | |
example_fns.sort() | |
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] | |
# Compose demo layout & data flow. | |
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
# with gr.Column(scale=0): | |
# gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button') | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True) | |
guide_text = gr.Markdown(_USER_GUIDE0, visible=True) | |
gr.Examples( | |
examples=examples_full, # NOTE: elements must match inputs list! | |
inputs=[image_block], | |
outputs=[image_block], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=40 | |
) | |
with gr.Column(scale=1): | |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False) | |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True) | |
with gr.Column(scale=1): | |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False) | |
elevation_slider = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True) | |
run_btn = gr.Button('Run Generation', variant='primary', interactive=False) | |
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT) | |
image_block.change(fn=partial(mask_prediction, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\ | |
.success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False) | |
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\ | |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False) | |
run_btn.click | |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD']) | |
if __name__=="__main__": | |
fire.Fire(run_demo) |