liujch1998 commited on
Commit
1a61355
·
1 Parent(s): ebb18a8

Improve outputs

Browse files
Files changed (1) hide show
  1. app.py +18 -19
app.py CHANGED
@@ -103,23 +103,16 @@ rainier = InteractiveRainier()
103
 
104
  def predict(question, kg_model, qa_model, max_input_len, max_output_len, m, top_p):
105
  result = rainier.run(question, max_input_len, max_output_len, m, top_p)
106
- output = ''
107
- output += f'QA model answer without knowledge: {result["knowless_pred"]}\n'
108
- output += f'QA model answer with knowledge: {result["knowful_pred"]}\n'
109
- output += '\n'
110
- output += f'All generated knowledges:\n'
111
- for knowledge in result['knowledges']:
112
- output += f' {knowledge}\n'
113
- output += '\n'
114
- output += f'Knowledge selected to make the prediction: {result["selected_knowledge"]}\n'
115
- return output
116
-
117
- description = '''This is a demo for the paper, <a href="https://arxiv.org/pdf/2210.03078.pdf" target="_blank">Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering</a>, presented in EMNLP 2022.
118
- [<a href="https://github.com/liujch1998/rainier" target="_blank">Code</a>] [<a href="https://huggingface.co/liujch1998/rainier-large" target="_blank">Model</a>]
119
- This demo is made & maintained by <a href="https://liujch1998.github.io/" target="_blank">Jiacheng (Gary) Liu</a>.
120
-
121
- Rainier is a knowledge-generating model that enhances the commonsense QA capability of a QA model.
122
- To try this model, select an example question, or write your own question in the suggested format.'''
123
 
124
  examples = [
125
  'If the mass of an object gets bigger what will happen to the amount of matter contained within it? \\n (A) gets bigger (B) gets smaller',
@@ -141,12 +134,18 @@ input_m = gr.Slider(label='Number of generated knowledges:', value=10, mininum=1
141
  info='The actual number of generated knowledges may be less than this number due to possible duplicates.',
142
  )
143
  input_top_p = gr.Slider(label='top_p for knowledge generation:', value=0.5, mininum=0.0, maximum=1.0, step=0.05)
144
- output_text = gr.Textbox(label='Output', interactive=False)
 
 
 
 
 
 
145
 
146
  gr.Interface(
147
  fn=predict,
148
  inputs=[input_question, input_kg_model, input_qa_model, input_max_input_len, input_max_output_len, input_m, input_top_p],
149
- outputs=output_text,
150
  title="Rainier Demo",
151
  description=description,
152
  ).launch()
 
103
 
104
  def predict(question, kg_model, qa_model, max_input_len, max_output_len, m, top_p):
105
  result = rainier.run(question, max_input_len, max_output_len, m, top_p)
106
+ # output = ''
107
+ # output += f'QA model answer without knowledge: {result["knowless_pred"]}\n'
108
+ # output += f'QA model answer with knowledge: {result["knowful_pred"]}\n'
109
+ # output += '\n'
110
+ # output += f'All generated knowledges:\n'
111
+ # for knowledge in result['knowledges']:
112
+ # output += f' {knowledge}\n'
113
+ # output += '\n'
114
+ # output += f'Knowledge selected to make the prediction: {result["selected_knowledge"]}\n'
115
+ return result['knowless_pred'], result['knowful_pred'], '\n'.join(result['knowledges']), result['selected_knowledge']
 
 
 
 
 
 
 
116
 
117
  examples = [
118
  'If the mass of an object gets bigger what will happen to the amount of matter contained within it? \\n (A) gets bigger (B) gets smaller',
 
134
  info='The actual number of generated knowledges may be less than this number due to possible duplicates.',
135
  )
136
  input_top_p = gr.Slider(label='top_p for knowledge generation:', value=0.5, mininum=0.0, maximum=1.0, step=0.05)
137
+ output_knowless_answer = gr.Textbox(label='QA model answer without knowledge:', interactive=False)
138
+ output_knowful_answer = gr.Textbox(label='QA model answer with knowledge:', interactive=False)
139
+ output_all_knowledges = gr.Textbox(label='All generated knowledges:', interactive=False)
140
+ output_selected_knowledge = gr.Textbox(label='Knowledge selected to make the prediction:', interactive=False)
141
+
142
+ description = '''This is a demo for the paper, [*Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering*](https://arxiv.org/pdf/2210.03078.pdf), presented at EMNLP 2022. [[Code](https://github.com/liujch1998/rainier)] [[Model](https://huggingface.co/liujch1998/rainier-large)] This demo is made & maintained by [Jiacheng (Gary) Liu](https://liujch1998.github.io).
143
+ Rainier is a knowledge-generating model that enhances the commonsense QA capability of a QA model. To try this model, select an example question, or write your own commonsense question in the suggested format.'''
144
 
145
  gr.Interface(
146
  fn=predict,
147
  inputs=[input_question, input_kg_model, input_qa_model, input_max_input_len, input_max_output_len, input_m, input_top_p],
148
+ outputs=[output_knowless_answer, output_knowful_answer, output_all_knowledges, output_selected_knowledge],
149
  title="Rainier Demo",
150
  description=description,
151
  ).launch()