lhzstar
initial commits
6bc94ac
raw
history blame
8.23 kB
import time
from pathlib import Path
from os.path import exists
import numpy as np
import torch
import torch.nn.functional as F
from torch import no_grad, optim
from torch.utils.data import DataLoader
import vocoder.hparams as hp
from vocoder.display import stream, simple_table
from vocoder.distribution import discretized_mix_logistic_loss
from vocoder.gen_wavernn import gen_devset
from vocoder.models.fatchord_version import WaveRNN
from vocoder.vocoder_dataset import VocoderDataset, collate_vocoder
from vocoder.utils import ValueWindow
from utils.profiler import Profiler
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path, ground_truth: bool, save_every: int,
backup_every: int, force_restart: bool, use_tb: bool):
if use_tb:
print("Use Tensorboard")
import tensorflow as tf
import datetime
# Hide GPU from visible devices
log_dir = f"log/vc/vocoder/tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_summary_writer = tf.summary.create_file_writer(log_dir)
# Check to make sure the hop length is correctly factorised
train_syn_dir = syn_dir.joinpath("train")
train_voc_dir = voc_dir.joinpath("train")
dev_syn_dir = syn_dir.joinpath("dev")
dev_voc_dir = voc_dir.joinpath("dev")
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length
# Instantiate the model
print("Initializing the model...")
model = WaveRNN(
rnn_dims=hp.voc_rnn_dims,
fc_dims=hp.voc_fc_dims,
bits=hp.bits,
pad=hp.voc_pad,
upsample_factors=hp.voc_upsample_factors,
feat_dims=hp.num_mels,
compute_dims=hp.voc_compute_dims,
res_out_dims=hp.voc_res_out_dims,
res_blocks=hp.voc_res_blocks,
hop_length=hp.hop_length,
sample_rate=hp.sample_rate,
mode=hp.voc_mode
)
if torch.cuda.is_available():
model = model.cuda()
# Initialize the optimizer
optimizer = optim.Adam(model.parameters())
for p in optimizer.param_groups:
p["lr"] = hp.voc_lr
loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss
train_loss_window = ValueWindow(100)
# Load the weights
model_dir = models_dir / run_id
model_dir.mkdir(exist_ok=True)
weights_fpath = model_dir / "vocoder.pt"
# train_loss_file_path = "vocoder_loss/vocoder_train_loss.npy"
# dev_loss_file_path = "vocoder_loss/vocoder_dev_loss.npy"
# if not exists("vocoder_loss"):
# import os
# os.mkdir("vocoder_loss")
if force_restart or not weights_fpath.exists():
print("\nStarting the training of WaveRNN from scratch\n")
model.save(weights_fpath, optimizer)
# losses = []
# dev_losses = []
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
print("WaveRNN weights loaded from step %d" % model.step)
# losses = list(np.load(train_loss_file_path)) if exists(train_loss_file_path) else []
# dev_losses = list(np.load(dev_loss_file_path)) if exists(dev_loss_file_path) else []
# Initialize the dataset
train_metadata_fpath = train_syn_dir.joinpath("train.txt") if ground_truth else \
train_voc_dir.joinpath("synthesized.txt")
train_mel_dir = train_syn_dir.joinpath("mels") if ground_truth else train_voc_dir.joinpath("mels_gta")
train_wav_dir = train_syn_dir.joinpath("audio")
train_dataset = VocoderDataset(train_metadata_fpath, train_mel_dir, train_wav_dir)
dev_metadata_fpath = dev_syn_dir.joinpath("dev.txt") if ground_truth else \
dev_voc_dir.joinpath("synthesized.txt")
dev_mel_dir = dev_syn_dir.joinpath("mels") if ground_truth else dev_voc_dir.joinpath("mels_gta")
dev_wav_dir = dev_syn_dir.joinpath("audio")
dev_dataset = VocoderDataset(dev_metadata_fpath, dev_mel_dir, dev_wav_dir)
train_dataloader = DataLoader(train_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True)
dev_dataloader = DataLoader(dev_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True)
dev_dataloader_ = DataLoader(dev_dataset, 1, shuffle=True)
# Begin the training
simple_table([('Batch size', hp.voc_batch_size),
('LR', hp.voc_lr),
('Sequence Len', hp.voc_seq_len)])
# best_loss_file_path = "vocoder_loss/best_loss.npy"
# best_loss = np.load(best_loss_file_path)[0] if exists(best_loss_file_path) else 1000
# profiler = Profiler(summarize_every=10, disabled=False)
for epoch in range(1, 3500):
start = time.time()
for i, (x, y, m) in enumerate(train_dataloader, 1):
model.train()
# profiler.tick("Blocking, waiting for batch (threaded)")
if torch.cuda.is_available():
x, m, y = x.cuda(), m.cuda(), y.cuda()
# profiler.tick("Data to cuda")
# Forward pass
y_hat = model(x, m)
if model.mode == 'RAW':
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
elif model.mode == 'MOL':
y = y.float()
y = y.unsqueeze(-1)
# profiler.tick("Forward pass")
# Backward pass
loss = loss_func(y_hat, y)
# profiler.tick("Loss")
optimizer.zero_grad()
loss.backward()
# profiler.tick("Backward pass")
optimizer.step()
# profiler.tick("Parameter update")
speed = i / (time.time() - start)
train_loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \
f"Train Loss: {train_loss_window.average:.4f} | " \
f"{speed:.4f}steps/s | Step: {k}k | "
stream(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('train_loss', train_loss_window.average, step=step)
torch.cuda.empty_cache()
if backup_every != 0 and step % backup_every == 0 :
model.checkpoint(model_dir, optimizer)
if save_every != 0 and step % save_every == 0 :
dev_loss = validate(dev_dataloader, model, loss_func)
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \
f"Train Loss: {train_loss_window.average:.4f} | Dev Loss: {dev_loss:.4f} | " \
f"{speed:.4f}steps/s | Step: {k}k | "
stream(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('val_loss', dev_loss, step=step)
# losses.append(train_loss_window.average)
# np.save(train_loss_file_path, np.array(losses, dtype=float))
# dev_losses.append(dev_loss)
# np.save(dev_loss_file_path, np.array(dev_losses, dtype=float))
# if dev_loss < best_loss :
# best_loss = dev_loss
# np.save(best_loss_file_path, np.array([best_loss]))
model.save(weights_fpath, optimizer)
# profiler.tick("Extra saving")
# gen_devset(model, dev_dataloader_, hp.voc_gen_at_checkpoint, hp.voc_gen_batched,
# hp.voc_target, hp.voc_overlap, model_dir)
print("")
def validate(dataloader, model, loss_func):
model.eval()
losses = []
with no_grad():
for i, (x, y, m) in enumerate(dataloader, 1):
if torch.cuda.is_available():
x, m, y = x.cuda(), m.cuda(), y.cuda()
y_hat = model(x, m)
if model.mode == 'RAW':
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
elif model.mode == 'MOL':
y = y.float()
y = y.unsqueeze(-1)
loss = loss_func(y_hat, y).item()
losses.append(loss)
torch.cuda.empty_cache()
return sum(losses) / len(losses)