Spaces:
Runtime error
Runtime error
import time | |
from pathlib import Path | |
from os.path import exists | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import no_grad, optim | |
from torch.utils.data import DataLoader | |
import vocoder.hparams as hp | |
from vocoder.display import stream, simple_table | |
from vocoder.distribution import discretized_mix_logistic_loss | |
from vocoder.gen_wavernn import gen_devset | |
from vocoder.models.fatchord_version import WaveRNN | |
from vocoder.vocoder_dataset import VocoderDataset, collate_vocoder | |
from vocoder.utils import ValueWindow | |
from utils.profiler import Profiler | |
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path, ground_truth: bool, save_every: int, | |
backup_every: int, force_restart: bool, use_tb: bool): | |
if use_tb: | |
print("Use Tensorboard") | |
import tensorflow as tf | |
import datetime | |
# Hide GPU from visible devices | |
log_dir = f"log/vc/vocoder/tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") | |
train_summary_writer = tf.summary.create_file_writer(log_dir) | |
# Check to make sure the hop length is correctly factorised | |
train_syn_dir = syn_dir.joinpath("train") | |
train_voc_dir = voc_dir.joinpath("train") | |
dev_syn_dir = syn_dir.joinpath("dev") | |
dev_voc_dir = voc_dir.joinpath("dev") | |
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length | |
# Instantiate the model | |
print("Initializing the model...") | |
model = WaveRNN( | |
rnn_dims=hp.voc_rnn_dims, | |
fc_dims=hp.voc_fc_dims, | |
bits=hp.bits, | |
pad=hp.voc_pad, | |
upsample_factors=hp.voc_upsample_factors, | |
feat_dims=hp.num_mels, | |
compute_dims=hp.voc_compute_dims, | |
res_out_dims=hp.voc_res_out_dims, | |
res_blocks=hp.voc_res_blocks, | |
hop_length=hp.hop_length, | |
sample_rate=hp.sample_rate, | |
mode=hp.voc_mode | |
) | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
# Initialize the optimizer | |
optimizer = optim.Adam(model.parameters()) | |
for p in optimizer.param_groups: | |
p["lr"] = hp.voc_lr | |
loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss | |
train_loss_window = ValueWindow(100) | |
# Load the weights | |
model_dir = models_dir / run_id | |
model_dir.mkdir(exist_ok=True) | |
weights_fpath = model_dir / "vocoder.pt" | |
# train_loss_file_path = "vocoder_loss/vocoder_train_loss.npy" | |
# dev_loss_file_path = "vocoder_loss/vocoder_dev_loss.npy" | |
# if not exists("vocoder_loss"): | |
# import os | |
# os.mkdir("vocoder_loss") | |
if force_restart or not weights_fpath.exists(): | |
print("\nStarting the training of WaveRNN from scratch\n") | |
model.save(weights_fpath, optimizer) | |
# losses = [] | |
# dev_losses = [] | |
else: | |
print("\nLoading weights at %s" % weights_fpath) | |
model.load(weights_fpath, optimizer) | |
print("WaveRNN weights loaded from step %d" % model.step) | |
# losses = list(np.load(train_loss_file_path)) if exists(train_loss_file_path) else [] | |
# dev_losses = list(np.load(dev_loss_file_path)) if exists(dev_loss_file_path) else [] | |
# Initialize the dataset | |
train_metadata_fpath = train_syn_dir.joinpath("train.txt") if ground_truth else \ | |
train_voc_dir.joinpath("synthesized.txt") | |
train_mel_dir = train_syn_dir.joinpath("mels") if ground_truth else train_voc_dir.joinpath("mels_gta") | |
train_wav_dir = train_syn_dir.joinpath("audio") | |
train_dataset = VocoderDataset(train_metadata_fpath, train_mel_dir, train_wav_dir) | |
dev_metadata_fpath = dev_syn_dir.joinpath("dev.txt") if ground_truth else \ | |
dev_voc_dir.joinpath("synthesized.txt") | |
dev_mel_dir = dev_syn_dir.joinpath("mels") if ground_truth else dev_voc_dir.joinpath("mels_gta") | |
dev_wav_dir = dev_syn_dir.joinpath("audio") | |
dev_dataset = VocoderDataset(dev_metadata_fpath, dev_mel_dir, dev_wav_dir) | |
train_dataloader = DataLoader(train_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True) | |
dev_dataloader = DataLoader(dev_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True) | |
dev_dataloader_ = DataLoader(dev_dataset, 1, shuffle=True) | |
# Begin the training | |
simple_table([('Batch size', hp.voc_batch_size), | |
('LR', hp.voc_lr), | |
('Sequence Len', hp.voc_seq_len)]) | |
# best_loss_file_path = "vocoder_loss/best_loss.npy" | |
# best_loss = np.load(best_loss_file_path)[0] if exists(best_loss_file_path) else 1000 | |
# profiler = Profiler(summarize_every=10, disabled=False) | |
for epoch in range(1, 3500): | |
start = time.time() | |
for i, (x, y, m) in enumerate(train_dataloader, 1): | |
model.train() | |
# profiler.tick("Blocking, waiting for batch (threaded)") | |
if torch.cuda.is_available(): | |
x, m, y = x.cuda(), m.cuda(), y.cuda() | |
# profiler.tick("Data to cuda") | |
# Forward pass | |
y_hat = model(x, m) | |
if model.mode == 'RAW': | |
y_hat = y_hat.transpose(1, 2).unsqueeze(-1) | |
elif model.mode == 'MOL': | |
y = y.float() | |
y = y.unsqueeze(-1) | |
# profiler.tick("Forward pass") | |
# Backward pass | |
loss = loss_func(y_hat, y) | |
# profiler.tick("Loss") | |
optimizer.zero_grad() | |
loss.backward() | |
# profiler.tick("Backward pass") | |
optimizer.step() | |
# profiler.tick("Parameter update") | |
speed = i / (time.time() - start) | |
train_loss_window.append(loss.item()) | |
step = model.get_step() | |
k = step // 1000 | |
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \ | |
f"Train Loss: {train_loss_window.average:.4f} | " \ | |
f"{speed:.4f}steps/s | Step: {k}k | " | |
stream(msg) | |
if use_tb: | |
with train_summary_writer.as_default(): | |
tf.summary.scalar('train_loss', train_loss_window.average, step=step) | |
torch.cuda.empty_cache() | |
if backup_every != 0 and step % backup_every == 0 : | |
model.checkpoint(model_dir, optimizer) | |
if save_every != 0 and step % save_every == 0 : | |
dev_loss = validate(dev_dataloader, model, loss_func) | |
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \ | |
f"Train Loss: {train_loss_window.average:.4f} | Dev Loss: {dev_loss:.4f} | " \ | |
f"{speed:.4f}steps/s | Step: {k}k | " | |
stream(msg) | |
if use_tb: | |
with train_summary_writer.as_default(): | |
tf.summary.scalar('val_loss', dev_loss, step=step) | |
# losses.append(train_loss_window.average) | |
# np.save(train_loss_file_path, np.array(losses, dtype=float)) | |
# dev_losses.append(dev_loss) | |
# np.save(dev_loss_file_path, np.array(dev_losses, dtype=float)) | |
# if dev_loss < best_loss : | |
# best_loss = dev_loss | |
# np.save(best_loss_file_path, np.array([best_loss])) | |
model.save(weights_fpath, optimizer) | |
# profiler.tick("Extra saving") | |
# gen_devset(model, dev_dataloader_, hp.voc_gen_at_checkpoint, hp.voc_gen_batched, | |
# hp.voc_target, hp.voc_overlap, model_dir) | |
print("") | |
def validate(dataloader, model, loss_func): | |
model.eval() | |
losses = [] | |
with no_grad(): | |
for i, (x, y, m) in enumerate(dataloader, 1): | |
if torch.cuda.is_available(): | |
x, m, y = x.cuda(), m.cuda(), y.cuda() | |
y_hat = model(x, m) | |
if model.mode == 'RAW': | |
y_hat = y_hat.transpose(1, 2).unsqueeze(-1) | |
elif model.mode == 'MOL': | |
y = y.float() | |
y = y.unsqueeze(-1) | |
loss = loss_func(y_hat, y).item() | |
losses.append(loss) | |
torch.cuda.empty_cache() | |
return sum(losses) / len(losses) |