lhzstar
initial commits
6bc94ac
raw
history blame
17.7 kB
from datetime import datetime
from functools import partial
from pathlib import Path
from os.path import exists
import os
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from synthesizer import audio
from synthesizer.models.tacotron import Tacotron
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from synthesizer.utils import ValueWindow, data_parallel_workaround
from synthesizer.utils.plot import plot_spectrogram
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from vocoder.display import *
def np_now(x: torch.Tensor): return x.detach().cpu().numpy()
def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")
def sync(device: torch.device):
# For correct profiling (cuda operations are async)
if device.type == "cuda":
torch.cuda.synchronize(device)
def train(run_id: str, syn_dir: Path, models_dir: Path, save_every: int, backup_every: int, force_restart: bool, use_tb: bool,
hparams):
if use_tb:
print("Use Tensorboard")
import tensorflow as tf
import datetime
# Hide GPU from visible devices
log_dir = f"log/vc/synthesizer/tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_summary_writer = tf.summary.create_file_writer(log_dir)
models_dir.mkdir(exist_ok=True)
model_dir = models_dir.joinpath(run_id)
plot_dir = model_dir.joinpath("plots")
wav_dir = model_dir.joinpath("wavs")
mel_output_dir = model_dir.joinpath("mel-spectrograms")
meta_folder = model_dir.joinpath("metas")
model_dir.mkdir(exist_ok=True)
plot_dir.mkdir(exist_ok=True)
wav_dir.mkdir(exist_ok=True)
mel_output_dir.mkdir(exist_ok=True)
meta_folder.mkdir(exist_ok=True)
weights_fpath = model_dir / f"synthesizer.pt"
train_metadata_fpath = syn_dir.joinpath("train/train.txt")
dev_metadata_fpath = syn_dir.joinpath("dev/dev.txt")
print("Checkpoint path: {}".format(weights_fpath))
print("Loading training data from: {}".format(train_metadata_fpath))
print("Using model: Tacotron")
# Bookkeeping
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
# From WaveRNN/train_tacotron.py
if torch.cuda.is_available():
device = torch.device("cuda")
for session in hparams.tts_schedule:
_, _, _, batch_size = session
if batch_size % torch.cuda.device_count() != 0:
raise ValueError("`batch_size` must be evenly divisible by n_gpus!")
else:
device = torch.device("cpu")
print("Using device:", device)
# Instantiate Tacotron Model
print("\nInitialising Tacotron Model...\n")
model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(device)
# Initialize the optimizer
optimizer = optim.Adam(model.parameters())
# train_loss_file_path = "synthesizer_loss/synthesizer_train_loss.npy"
# dev_loss_file_path = "synthesizer_loss/synthesizer_dev_loss.npy"
# if not exists("synthesizer_loss"):
# import os
# os.mkdir("synthesizer_loss")
# Load the weights
if force_restart or not weights_fpath.exists():
print("\nStarting the training of Tacotron from scratch\n")
model.save(weights_fpath)
# Embeddings metadata
char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv")
with open(char_embedding_fpath, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
# losses = []
# dev_losses = []
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
print("Tacotron weights loaded from step %d" % model.step)
# losses = list(np.load(train_loss_file_path)) if exists(train_loss_file_path) else []
# dev_losses = list(np.load(dev_loss_file_path)) if exists(dev_loss_file_path) else []
# Initialize the dataset
train_mel_dir = syn_dir.joinpath("train/mels")
train_embed_dir = syn_dir.joinpath("train/embeds")
dev_mel_dir = syn_dir.joinpath("dev/mels")
dev_embed_dir = syn_dir.joinpath("dev/embeds")
train_dataset = SynthesizerDataset(train_metadata_fpath, train_mel_dir, train_embed_dir, hparams)
dev_dataset = SynthesizerDataset(dev_metadata_fpath, dev_mel_dir, dev_embed_dir, hparams)
best_loss_file_path = "synthesizer_loss/best_loss.npy"
best_loss = np.load(best_loss_file_path)[0] if exists(best_loss_file_path) else 1000
if not exists("synthesizer_loss"):
os.makedirs("synthesizer_loss")
# profiler = Profiler(summarize_every=10, disabled=False)
for i, session in enumerate(hparams.tts_schedule):
current_step = model.get_step()
r, lr, max_step, batch_size = session
training_steps = max_step - current_step
# Do we need to change to the next session?
if current_step >= max_step:
# Are there no further sessions than the current one?
if i == len(hparams.tts_schedule) - 1:
# We have completed training. Save the model and exit
model.save(weights_fpath, optimizer)
break
else:
# There is a following session, go to it
continue
model.r = r
# Begin the training
simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"),
("Batch Size", batch_size),
("Learning Rate", lr),
("Outputs/Step (r)", model.r)])
for p in optimizer.param_groups:
p["lr"] = lr
collate_fn = partial(collate_synthesizer, r=r, hparams=hparams)
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=4, collate_fn=collate_fn, pin_memory=True)
total_iters = len(train_dataset)
steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32)
epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32)
for epoch in range(1, epochs+1):
for i, (texts, mels, embeds, idx) in enumerate(train_dataloader, 1):
start_time = time.time()
# profiler.tick("Blocking, waiting for batch (threaded)")
# Generate stop tokens for training
stop = torch.ones(mels.shape[0], mels.shape[2])
for j, k in enumerate(idx):
stop[j, :int(train_dataset.metadata[k][4])-1] = 0
texts = texts.to(device)
mels = mels.to(device)
embeds = embeds.to(device)
stop = stop.to(device)
# sync(device)
# profiler.tick("Data to %s" % device)
# Forward pass
# Parallelize model onto GPUS using workaround due to python bug
# if device.type == "cuda" and torch.cuda.device_count() > 1:
# m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts, mels, embeds)
# else:
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)
# sync(device)
# profiler.tick("Forward pass")
# Backward pass
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
m2_loss = F.mse_loss(m2_hat, mels)
stop_loss = F.binary_cross_entropy(stop_pred, stop)
loss = m1_loss + m2_loss + stop_loss
# sync(device)
# profiler.tick("Loss")
optimizer.zero_grad()
loss.backward()
# profiler.tick("Backward pass")
if hparams.tts_clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm)
if np.isnan(grad_norm.cpu()):
print("grad_norm was NaN!")
optimizer.step()
# profiler.tick("Parameter update")
time_window.append(time.time() - start_time)
loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Train Loss: {loss_window.average:#.4} | " \
f"{1./time_window.average:#.2} steps/s | Step: {k}k | "
stream(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('train_loss', loss_window.average, step=step)
tf.summary.scalar('learning_rate', lr, step=step)
# Backup or save model as appropriate
# if backup_every != 0 and step % backup_every == 0 :
# backup_fpath = weights_fpath.parent / f"synthesizer_{k:06d}.pt"
# model.save(backup_fpath, optimizer)
torch.cuda.empty_cache()
if save_every != 0 and i % save_every == 0:
dev_loss = validate(dev_dataset, model, collate_fn)
msg = f"\n| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Train Loss: {loss_window.average:#.4} | " \
f"Dev Loss: {dev_loss:#.4} | {1./time_window.average:#.2} steps/s | Step: {k}k | "
print(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('val_loss', dev_loss, step=step)
# losses.append(loss_window.average)
# np.save(train_loss_file_path, np.array(losses, dtype=float))
# dev_losses.append(dev_loss)
# np.save(dev_loss_file_path, np.array(dev_losses, dtype=float))
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
if dev_loss < best_loss:
best_loss = dev_loss
np.save(best_loss_file_path, np.array([best_loss]))
model.save(weights_fpath, optimizer)
# Evaluate model to generate dev samples
# epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done
# step_eval = hparams.tts_eval_interval > 0 and i % hparams.tts_eval_interval == 0 # Every N steps
# if step_eval:
# generate train samples
# for sample_idx in range(hparams.tts_eval_num_samples):
# # At most, generate samples equal to number in the batch
# if sample_idx + 1 <= len(texts):
# # Remove padding from mels using frame length in metadata
# mel_length = int(train_dataset.metadata[idx[sample_idx]][4])
# mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
# target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
# attention_len = mel_length // model.r
# eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
# mel_prediction=mel_prediction,
# target_spectrogram=target_spectrogram,
# input_seq=np_now(texts[sample_idx]),
# step=step,
# plot_dir=plot_dir,
# mel_output_dir=mel_output_dir,
# wav_dir=wav_dir,
# sample_num=sample_idx + 1,
# loss=loss,
# hparams=hparams,
# if_dev="train")
# generate dev samples
# for sample_idx in range(hparams.tts_eval_num_samples):
# # At most, generate samples equal to number in the batch
# if sample_idx + 1 <= len(dev_input_texts):
# # Remove padding from mels using frame length in metadata
# mel_length = int(dev_dataset.metadata[dev_idx[sample_idx]][4])
# dev_mel_prediction = np_now(dev_m2_hat[sample_idx]).T[:mel_length]
# target_spectrogram = np_now(dev_target_mels[sample_idx]).T[:mel_length]
# attention_len = mel_length // model.r
# eval_model(attention=np_now(dev_attention[sample_idx][:, :attention_len]),
# mel_prediction=dev_mel_prediction,
# target_spectrogram=target_spectrogram,
# input_seq=np_now(dev_input_texts[sample_idx]),
# step=step,
# plot_dir=plot_dir,
# mel_output_dir=mel_output_dir,
# wav_dir=wav_dir,
# sample_num=sample_idx + 1,
# loss=dev_loss,
# hparams=hparams,
# if_dev="dev")
# Break out of loop to update training schedule
if step >= max_step:
break
# Add line break after every epoch
print("")
def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams, if_dev = None):
# Save some results for evaluation
attention_path = str(plot_dir.joinpath("{}_attention_step_{}_sample_{}".format(if_dev, step, sample_num)))
save_attention_multiple(attention, attention_path)
# save predicted mel spectrogram to disk (debug)
mel_output_fpath = mel_output_dir.joinpath("{}-mel-prediction-step-{}_sample_{}.npy".format(if_dev, step, sample_num))
np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False)
# save griffin lim inverted wav for debug (mel -> wav)
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
wav_fpath = wav_dir.joinpath("{}-step-{}-wave-from-mel_sample_{}.wav".format(if_dev, step, sample_num))
audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate)
# save real and predicted mel-spectrogram plot to disk (control purposes)
spec_fpath = plot_dir.joinpath("{}-step-{}-mel-spectrogram_sample_{}.png".format(if_dev, step, sample_num))
title_str = "{}, {}, step={}, {} loss={:.5f}".format("Tacotron", time_string(), step, if_dev, loss)
plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels)
print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))
def validate(dataset, model, collate_fn):
model.eval()
with torch.no_grad():
losses = []
dataloader = DataLoader(dataset, 32, num_workers=4, shuffle=False, collate_fn=collate_fn)
for i, (texts, mels, embeds, idx) in enumerate(dataloader, 1):
# Generate stop tokens for training
stop = torch.ones(mels.shape[0], mels.shape[2])
for j, k in enumerate(idx):
stop[j, :int(dataset.metadata[k][4])-1] = 0
texts = texts.cuda()
mels = mels.cuda()
embeds = embeds.cuda()
stop = stop.cuda()
# Forward pass
# Parallelize model onto GPUS using workaround due to python bug
# if device.type == "cuda" and torch.cuda.device_count() > 1:
# m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts, mels, embeds)
# else:
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)
# Backward pass
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
m2_loss = F.mse_loss(m2_hat, mels)
stop_loss = F.binary_cross_entropy(stop_pred, stop)
loss = m1_loss + m2_loss + stop_loss
losses.append(loss.item())
model.train()
torch.cuda.empty_cache()
return sum(losses) / len(losses)