CelebChat / rtvc /synthesizer /preprocess.py
lhzstar
initial commits
6bc94ac
raw
history blame
19.5 kB
from multiprocessing.pool import Pool
from synthesizer import audio
from functools import partial
from itertools import chain, groupby
from encoder import inference as encoder_infer
from pathlib import Path
from utils import logmmse
from tqdm import tqdm
import numpy as np
import librosa
import random
def preprocess_librispeech(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams,
datasets_name: str, subfolders: str, no_alignments=False):
# Gather the input directories of LibriSpeeech
dataset_root = datasets_root.joinpath(datasets_name)
input_dirs = [dataset_root.joinpath(subfolder.strip()) for subfolder in subfolders.split(",")]
print("\n ".join(map(str, ["Using data from:"] + input_dirs)))
assert all(input_dir.exists() for input_dir in input_dirs)
train_input_dirs = input_dirs[: -1]
dev_input_dirs = input_dirs[-1: ]
# Create the output directories for each output file type
train_out_dir = out_dir.joinpath("train")
train_out_dir.mkdir(exist_ok=True)
train_out_dir.joinpath("mels").mkdir(exist_ok=True)
train_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Create a metadata file
train_metadata_fpath = train_out_dir.joinpath("train.txt")
train_metadata_file = train_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8")
dev_out_dir = out_dir.joinpath("dev")
dev_out_dir.mkdir(exist_ok=True)
dev_out_dir.joinpath("mels").mkdir(exist_ok=True)
dev_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Create a metadata file
dev_metadata_fpath = dev_out_dir.joinpath("dev.txt")
dev_metadata_file = dev_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8")
# Preprocess the train dataset
train_speaker_dirs = list(chain.from_iterable(train_input_dir.glob("*") for train_input_dir in train_input_dirs))
func = partial(preprocess_speaker, out_dir=train_out_dir, skip_existing=skip_existing,
hparams=hparams, no_alignments=no_alignments)
job = Pool(n_processes).imap(func, train_speaker_dirs)
for speaker_metadata in tqdm(job, datasets_name, len(train_speaker_dirs), unit="speakers"):
for metadatum in speaker_metadata:
train_metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
train_metadata_file.close()
# Verify the contents of the metadata file
with train_metadata_fpath.open("r", encoding="utf-8") as train_metadata_file:
metadata = [line.split("|") for line in train_metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print("The train dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
# Preprocess the dev dataset
dev_speaker_dirs = list(chain.from_iterable(dev_input_dir.glob("*") for dev_input_dir in dev_input_dirs))
func = partial(preprocess_speaker, out_dir=dev_out_dir, skip_existing=skip_existing,
hparams=hparams, no_alignments=no_alignments)
job = Pool(n_processes).imap(func, dev_speaker_dirs)
for speaker_metadata in tqdm(job, datasets_name, len(dev_speaker_dirs), unit="speakers"):
for metadatum in speaker_metadata:
dev_metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
dev_metadata_file.close()
# Verify the contents of the metadata file
with dev_metadata_fpath.open("r", encoding="utf-8") as dev_metadata_file:
metadata = [line.split("|") for line in dev_metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print("The dev dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def preprocess_vctk(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams,
datasets_name: str, subfolders: str, no_alignments=True):
# TODO:Gather the input directories of VCTK
dataset_root = datasets_root.joinpath(datasets_name)
input_dir = dataset_root.joinpath(subfolders)
print("Using data from:" + str(input_dir))
assert input_dir.exists()
paths = [*input_dir.rglob("*.flac")]
# train dev audio data split
train_input_fpaths = []
dev_input_fpaths = []
pairs = sorted([(p.parts[-2].split('_')[0], p) for p in paths])
del paths
for _, group in groupby(pairs, lambda pair: pair[0]):
paths = sorted([p for _, p in group if "mic1.flac" in str(p)]) # only get mic1 flac file
random.seed(0)
random.shuffle(paths)
n = round(len(paths) * 0.9)
train_input_fpaths.extend(paths[:n])
# dev dataset has the same speakers as train dataset
dev_input_fpaths.extend(paths[n:])
# Create the output directories for each output file type
train_out_dir = out_dir.joinpath("train")
train_out_dir.mkdir(exist_ok=True)
train_out_dir.joinpath("mels").mkdir(exist_ok=True)
train_out_dir.joinpath("audio").mkdir(exist_ok=True)
dev_out_dir = out_dir.joinpath("dev")
dev_out_dir.mkdir(exist_ok=True)
dev_out_dir.joinpath("mels").mkdir(exist_ok=True)
dev_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Preprocess the train dataset
preprocess_data(train_input_fpaths, mode="train", out_dir=train_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments)
# Preprocess the dev dataset
preprocess_data(dev_input_fpaths, mode="dev", out_dir=dev_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments)
def preprocess_speaker(speaker_dir, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool):
metadata = []
for book_dir in speaker_dir.glob("*"):
if no_alignments:
# Gather the utterance audios and texts
# LibriTTS uses .wav but we will include extensions for compatibility with other datasets
extensions = ["*.wav", "*.flac", "*.mp3"]
for extension in extensions:
wav_fpaths = book_dir.glob(extension)
for wav_fpath in wav_fpaths:
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# Get the corresponding text
# Check for .txt (for compatibility with other datasets)
text_fpath = wav_fpath.with_suffix(".txt")
if not text_fpath.exists():
# Check for .normalized.txt (LibriTTS)
text_fpath = wav_fpath.with_suffix(".normalized.txt")
assert text_fpath.exists()
with text_fpath.open("r") as text_file:
text = "".join([line for line in text_file])
text = text.replace("\"", "")
text = text.strip()
# Process the utterance
metadata.append(process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name),
skip_existing, hparams))
else:
# Process alignment file (LibriSpeech support)
# Gather the utterance audios and texts
try:
alignments_fpath = next(book_dir.glob("*.alignment.txt"))
with alignments_fpath.open("r") as alignments_file:
alignments = [line.rstrip().split(" ") for line in alignments_file]
except StopIteration:
# A few alignment files will be missing
continue
# Iterate over each entry in the alignments file
for wav_fname, words, end_times in alignments:
wav_fpath = book_dir.joinpath(wav_fname + ".flac")
assert wav_fpath.exists()
words = words.replace("\"", "").split(",")
end_times = list(map(float, end_times.replace("\"", "").split(",")))
# Process each sub-utterance
wavs, texts = split_on_silences(wav_fpath, words, end_times, hparams)
for i, (wav, text) in enumerate(zip(wavs, texts)):
sub_basename = "%s_%02d" % (wav_fname, i)
metadata.append(process_utterance(wav, text, out_dir, sub_basename,
skip_existing, hparams))
return [m for m in metadata if m is not None]
def preprocess_data(wav_fpaths, mode, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool):
assert mode in ["train", "dev"]
# Create a metadata file
metadata_fpath = out_dir.joinpath(f"{mode}.txt")
metadata_file = metadata_fpath.open("a", encoding="utf-8")
if no_alignments:
for wav_fpath in tqdm(wav_fpaths, desc=mode):
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# Get the corresponding text
# Check for .txt (for compatibility with other datasets)
base_name = "_".join(wav_fpath.name.split(".")[0].split("_")[: -1]) + ".txt"
text_fpath = wav_fpath.with_name(base_name)
if not text_fpath.exists():
continue
with text_fpath.open("r") as text_file:
text = "".join([line for line in text_file])
text = text.replace("\"", "")
text = text.strip()
# Process the utterance
metadata = process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name), skip_existing, hparams, trim_silence=False)
if metadata is not None:
metadata_file.write("|".join(str(x) for x in metadata) + "\n")
metadata_file.close()
# Verify the contents of the metadata file
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print(f"The {mode} dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def split_on_silences(wav_fpath, words, end_times, hparams):
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
words = np.array(words)
start_times = np.array([0.0] + end_times[:-1])
end_times = np.array(end_times)
assert len(words) == len(end_times) == len(start_times)
assert words[0] == "" and words[-1] == ""
# Find pauses that are too long
mask = (words == "") & (end_times - start_times >= hparams.silence_min_duration_split)
mask[0] = mask[-1] = True
breaks = np.where(mask)[0]
# Profile the noise from the silences and perform noise reduction on the waveform
silence_times = [[start_times[i], end_times[i]] for i in breaks]
silence_times = (np.array(silence_times) * hparams.sample_rate).astype(np.int)
noisy_wav = np.concatenate([wav[stime[0]:stime[1]] for stime in silence_times])
if len(noisy_wav) > hparams.sample_rate * 0.02:
profile = logmmse.profile_noise(noisy_wav, hparams.sample_rate)
wav = logmmse.denoise(wav, profile, eta=0)
# Re-attach segments that are too short
segments = list(zip(breaks[:-1], breaks[1:]))
segment_durations = [start_times[end] - end_times[start] for start, end in segments]
i = 0
while i < len(segments) and len(segments) > 1:
if segment_durations[i] < hparams.utterance_min_duration:
# See if the segment can be re-attached with the right or the left segment
left_duration = float("inf") if i == 0 else segment_durations[i - 1]
right_duration = float("inf") if i == len(segments) - 1 else segment_durations[i + 1]
joined_duration = segment_durations[i] + min(left_duration, right_duration)
# Do not re-attach if it causes the joined utterance to be too long
if joined_duration > hparams.hop_size * hparams.max_mel_frames / hparams.sample_rate:
i += 1
continue
# Re-attach the segment with the neighbour of shortest duration
j = i - 1 if left_duration <= right_duration else i
segments[j] = (segments[j][0], segments[j + 1][1])
segment_durations[j] = joined_duration
del segments[j + 1], segment_durations[j + 1]
else:
i += 1
# Split the utterance
segment_times = [[end_times[start], start_times[end]] for start, end in segments]
segment_times = (np.array(segment_times) * hparams.sample_rate).astype(np.int)
wavs = [wav[segment_time[0]:segment_time[1]] for segment_time in segment_times]
texts = [" ".join(words[start + 1:end]).replace(" ", " ") for start, end in segments]
# # DEBUG: play the audio segments (run with -n=1)
# import sounddevice as sd
# if len(wavs) > 1:
# print("This sentence was split in %d segments:" % len(wavs))
# else:
# print("There are no silences long enough for this sentence to be split:")
# for wav, text in zip(wavs, texts):
# # Pad the waveform with 1 second of silence because sounddevice tends to cut them early
# # when playing them. You shouldn't need to do that in your parsers.
# wav = np.concatenate((wav, [0] * 16000))
# print("\t%s" % text)
# sd.play(wav, 16000, blocking=True)
# print("")
return wavs, texts
def process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
skip_existing: bool, hparams, trim_silence=True):
## FOR REFERENCE:
# For you not to lose your head if you ever wish to change things here or implement your own
# synthesizer.
# - Both the audios and the mel spectrograms are saved as numpy arrays
# - There is no processing done to the audios that will be saved to disk beyond volume
# normalization (in split_on_silences)
# - However, pre-emphasis is applied to the audios before computing the mel spectrogram. This
# is why we re-apply it on the audio on the side of the vocoder.
# - Librosa pads the waveform before computing the mel spectrogram. Here, the waveform is saved
# without extra padding. This means that you won't have an exact relation between the length
# of the wav and of the mel spectrogram. See the vocoder data loader.
# Skip existing utterances if needed
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename)
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename)
if skip_existing and mel_fpath.exists() and wav_fpath.exists():
return None
# Trim silence
wav = encoder_infer.preprocess_wav(wav, normalize=False, trim_silence=trim_silence)
# Skip utterances that are too short
if len(wav) < hparams.utterance_min_duration * hparams.sample_rate:
return None
# Compute the mel spectrogram
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
mel_frames = mel_spectrogram.shape[1]
# Skip utterances that are too long
if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length:
return None
# Write the spectrogram, embed and audio to disk
np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False)
np.save(wav_fpath, wav, allow_pickle=False)
# Return a tuple describing this training example
return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text
def embed_utterance(fpaths, encoder_model_fpath):
if not encoder_infer.is_loaded():
encoder_infer.load_model(encoder_model_fpath)
# Compute the speaker embedding of the utterance
wav_fpath, embed_fpath = fpaths
wav = np.load(wav_fpath)
wav = encoder_infer.preprocess_wav(wav)
embed = encoder_infer.embed_utterance(wav)
np.save(embed_fpath, embed, allow_pickle=False)
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
# create train embeddings
train_wav_dir = synthesizer_root.joinpath("train/audio")
train_metadata_fpath = synthesizer_root.joinpath("train/train.txt")
assert train_wav_dir.exists() and train_metadata_fpath.exists()
train_embed_dir = synthesizer_root.joinpath("train/embeds")
train_embed_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with train_metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(train_wav_dir.joinpath(m[0]), train_embed_dir.joinpath(m[2])) for m in metadata]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
# create dev embeddings
dev_wav_dir = synthesizer_root.joinpath("dev/audio")
dev_metadata_fpath = synthesizer_root.joinpath("dev/dev.txt")
assert dev_wav_dir.exists() and dev_metadata_fpath.exists()
dev_embed_dir = synthesizer_root.joinpath("dev/embeds")
dev_embed_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with dev_metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(dev_wav_dir.joinpath(m[0]), dev_embed_dir.joinpath(m[2])) for m in metadata]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))