CelebChat / run_eval.py
lhzstar
new commits
5beab45
raw
history blame
2.52 kB
import itertools
import re
import spacy
import json
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
import torch
from utils import *
from celebbot import CelebBot
QA_MODEL_ID = "google/flan-t5-large"
SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
celeb_names = ["Cate Blanchett", "David Beckham", "Emma Watson", "Lady Gaga", "Madonna", "Mark Zuckerberg"]
celeb_data = get_celeb_data("data.json")
references = [val['answers'] for key, val in list(celeb_data.items()) if key in celeb_names]
references = list(itertools.chain.from_iterable(references))
predictions = []
device = 'cpu'
QA_tokenizer = AutoTokenizer.from_pretrained(QA_MODEL_ID)
QA_model = AutoModelForSeq2SeqLM.from_pretrained(QA_MODEL_ID).to(device)
sentTr_tokenizer = AutoTokenizer.from_pretrained(SENTTR_MODEL_ID)
sentTr_model = AutoModel.from_pretrained(SENTTR_MODEL_ID).to(device)
for celeb_name in celeb_names:
gender = celeb_data[celeb_name]["gender"]
if celeb_name == "Madonna":
name = "Madonna-American-singer-and-actress"
elif celeb_name == "Anne Hathaway":
name = "Anne-Hathaway-American-actress"
else:
name="-".join(celeb_name.split(" "))
knowledge = get_article(f"https://www.britannica.com/biography/{name}")
spacy_model = spacy.load("en_core_web_lg")
knowledge_sents = [i.text.strip() for i in spacy_model(knowledge).sents]
ai = CelebBot(celeb_name, gender, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents)
for q in celeb_data[celeb_name]["questions"]:
ai.text = q
response = ai.question_answer()
print("response:", response)
predictions.append(response)
file = open('predictions.txt','w')
for prediction in predictions:
file.write(prediction+"\n")
file.close()
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=references, max_order=4)
print(f"BLEU: {round(results['bleu'], 2)}")
meteor = evaluate.load("meteor")
results = meteor.compute(predictions=predictions, references=references)
print(f"METEOR: {round(results['meteor'], 2)}")
rouge = evaluate.load("rouge")
results = rouge.compute(predictions=predictions, references=references)
print(f"ROUGE: {round(results['rougeL'], 2)}")
bertscore = evaluate.load("bertscore")
results = bertscore.compute(predictions=predictions, references=references, rescale_with_baseline=True, lang="en")
print(f"F1: {round(sum(results['f1'])/len(results['f1']), 2)}")