CelebChat / run_eval.py
lhzstar
initial commits
6bc94ac
raw
history blame
3.27 kB
import itertools
import re
import spacy
import json
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
from utils import *
from celebbot import CelebBot
DEBUG=True
QA_MODEL_ID = "google/flan-t5-large"
SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
def evaluate_system():
with open("data.json") as json_file:
celeb_data = json.load(json_file)
references = [val['answers'] for val in list(celeb_data.values())]
references = list(itertools.chain.from_iterable(references))
predictions = []
QA_tokenizer = AutoTokenizer.from_pretrained(QA_MODEL_ID)
QA_model = AutoModelForSeq2SeqLM.from_pretrained(QA_MODEL_ID)
sentTr_tokenizer = AutoTokenizer.from_pretrained(SENTTR_MODEL_ID)
sentTr_model = AutoModel.from_pretrained(SENTTR_MODEL_ID)
for name in list(celeb_data.keys()):
gender = celeb_data[name]["gender"]
knowledge = celeb_data[name]["knowledge"]
lname = name.split(" ")[-1]
lname_regex = re.compile(rf'\b({lname})\b')
name_regex = re.compile(rf'\b({name})\b')
lnames = lname+"’s" if not lname.endswith("s") else lname+"’"
lnames_regex = re.compile(rf'\b({lnames})\b')
names = name+"’s" if not name.endswith("s") else name+"’"
names_regex = re.compile(rf'\b({names})\b')
if gender == "M":
knowledge = re.sub(he_regex, "I", knowledge)
knowledge = re.sub(his_regex, "my", knowledge)
elif gender == "F":
knowledge = re.sub(she_regex, "I", knowledge)
knowledge = re.sub(her_regex, "my", knowledge)
knowledge = re.sub(names_regex, "my", knowledge)
knowledge = re.sub(lnames_regex, "my", knowledge)
knowledge = re.sub(name_regex, "I", knowledge)
knowledge = re.sub(lname_regex, "I", knowledge)
spacy_model = spacy.load("en_core_web_sm")
knowledge_sents = [i.text.strip() for i in spacy_model(knowledge).sents]
ai = CelebBot(name, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents)
for q in celeb_data[name]["questions"]:
if not DEBUG:
ai.speech_to_text()
else:
# ai.text = input("Your question: ")
pass
ai.text = q
if ai.text != "":
print("me --> ", ai.text)
predictions.append(ai.question_answer())
if not DEBUG:
ai.text_to_speech()
ai.text = ""
file = open('predictions.txt','w')
for prediction in predictions:
file.write(prediction+"\n")
file.close()
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=references, max_order=4)
print(f"BLEU: {round(results['bleu'], 2)}")
meteor = evaluate.load("meteor")
results = meteor.compute(predictions=predictions, references=references)
print(f"METEOR: {round(results['meteor'], 2)}")
rouge = evaluate.load("rouge")
results = rouge.compute(predictions=predictions, references=references)
print(f"ROUGE: {round(results['rougeL'], 2)}")
if __name__ == "__main__":
evaluate_system()