Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import numpy as np | |
from os.path import exists | |
import torch | |
from encoder.data_objects import DataLoader, Train_Dataset, Dev_Dataset | |
from encoder.model import SpeakerEncoder | |
from encoder.params_model import * | |
from encoder.visualizations import Visualizations | |
from utils.profiler import Profiler | |
def sync(device: torch.device): | |
# For correct profiling (cuda operations are async) | |
if device.type == "cuda": | |
torch.cuda.synchronize(device) | |
def update_lr(optimizer, lr): | |
for param_group in optimizer.param_groups: | |
param_group["lr"] = lr | |
def train(run_id: str, clean_data_root: Path, models_dir: Path, umap_every: int, save_every: int, | |
backup_every: int, vis_every: int, force_restart: bool, visdom_server: str, | |
no_visdom: bool): | |
# Create a dataset and a dataloader | |
train_dataset = Train_Dataset(clean_data_root.joinpath("train")) | |
dev_dataset = Dev_Dataset(clean_data_root.joinpath("dev")) | |
train_loader = DataLoader( | |
train_dataset, | |
speakers_per_batch, | |
utterances_per_speaker, | |
shuffle=True, | |
num_workers=8, | |
pin_memory=True | |
) | |
dev_batch = len(dev_dataset) | |
dev_loader = DataLoader( | |
dev_dataset, | |
dev_batch, | |
utterances_per_speaker, | |
shuffle=False, | |
num_workers=2, | |
pin_memory=True | |
) | |
# Setup the device on which to run the forward pass and the loss. These can be different, | |
# because the forward pass is faster on the GPU whereas the loss is often (depending on your | |
# hyperparameters) faster on the CPU. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# FIXME: currently, the gradient is None if loss_device is cuda | |
# loss_device = torch.device("cpu") | |
loss_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ####modified#### | |
# Create the model and the optimizer | |
model = SpeakerEncoder(device, loss_device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init) | |
current_lr = learning_rate_init | |
init_step = 1 | |
# Configure file path for the model | |
model_dir = models_dir / run_id | |
model_dir.mkdir(exist_ok=True, parents=True) | |
state_fpath = model_dir / "encoder.pt" | |
# Load any existing model | |
if not force_restart: | |
if state_fpath.exists(): | |
print("Found existing model \"%s\", loading it and resuming training." % run_id) | |
checkpoint = torch.load(state_fpath) | |
init_step = checkpoint["step"] | |
print(f"Resuming training from step {init_step}") | |
model.load_state_dict(checkpoint["model_state"]) | |
optimizer.load_state_dict(checkpoint["optimizer_state"]) | |
optimizer.param_groups[0]["lr"] = learning_rate_init | |
else: | |
print("No model \"%s\" found, starting training from scratch." % run_id) | |
else: | |
print("Starting the training from scratch.") | |
# Initialize the visualization environment | |
vis = Visualizations(run_id, vis_every, server=visdom_server, disabled=no_visdom) | |
vis.log_dataset(train_dataset) | |
vis.log_params() | |
device_name = str(torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU") | |
vis.log_implementation({"Device": device_name}) | |
best_eer_file_path = "encoder_loss/best_eer.npy" | |
if not exists("encoder_loss"): | |
import os | |
os.mkdir("encoder_loss") | |
best_eer = np.load(best_eer_file_path)[0] if exists(best_eer_file_path) else 1 | |
# Training loop | |
profiler = Profiler(summarize_every=1000, disabled=False) | |
for step, speaker_batch in enumerate(train_loader, init_step): | |
model.train() | |
profiler.tick("Blocking, waiting for batch (threaded)") | |
# Data to GPU mem | |
inputs = torch.from_numpy(speaker_batch.data).to(device) | |
sync(device) | |
profiler.tick("Data to %s" % device) | |
# Forward pass | |
embeds = model(inputs) | |
sync(device) | |
profiler.tick("Forward pass") | |
embeds_loss = embeds.view((speakers_per_batch, utterances_per_speaker, -1)).to(loss_device) | |
loss, eer = model.loss(embeds_loss) | |
sync(loss_device) | |
profiler.tick("Loss") | |
# Backward pass | |
model.zero_grad() # Sets gradients of all model parameters to zero | |
loss.backward() # Calc gradients of all model parameters | |
profiler.tick("Backward pass") | |
model.do_gradient_ops() | |
optimizer.step() # do gradient descent of all model parameters | |
profiler.tick("Parameter update") | |
# Update visualizations | |
# learning_rate = optimizer.param_groups[0]["lr"] | |
# Overwrite the latest version of the model | |
if save_every != 0 and step % save_every == 0: | |
current_lr *= 0.995 | |
update_lr(optimizer, current_lr) | |
dev_loss, dev_eer, dev_embeds = validate(dev_loader, model, dev_batch, device, loss_device) | |
sync(device) | |
sync(loss_device) | |
profiler.tick("validate") | |
vis.update(loss.item(), eer, step, dev_loss, dev_eer) | |
if dev_eer < best_eer: | |
best_eer = dev_eer | |
np.save(best_eer_file_path, np.array([best_eer])) | |
print("Saving the model (step %d)" % step) | |
torch.save({ | |
"step": step + 1, | |
"model_state": model.state_dict(), | |
"optimizer_state": optimizer.state_dict(), | |
}, state_fpath) | |
else: | |
vis.update(loss.item(), eer, step) | |
# Draw projections and save them to the backup folder | |
if umap_every != 0 and step % umap_every == 0: | |
print("Drawing and saving projections (step %d)" % step) | |
projection_fpath = model_dir / f"umap_{step:06d}.png" | |
dev_projection_fpath = model_dir / f"dev_umap_{step:06d}.png" | |
embeds = embeds.detach().cpu().numpy() | |
dev_embeds = dev_embeds.detach().cpu().numpy() | |
vis.draw_projections(embeds, dev_embeds, utterances_per_speaker, step, projection_fpath, dev_projection_fpath) | |
vis.save() | |
# # Make a backup | |
# if backup_every != 0 and step % backup_every == 0: | |
# print("Making a backup (step %d)" % step) | |
# backup_fpath = model_dir / f"encoder_{step:06d}.bak" | |
# torch.save({ | |
# "step": step + 1, | |
# "model_state": model.state_dict(), | |
# "optimizer_state": optimizer.state_dict(), | |
# }, backup_fpath) | |
profiler.tick("Extras (visualizations, saving)") | |
def validate(dev_loader: DataLoader, model: SpeakerEncoder, dev_batch, device, loss_device): | |
model.eval() | |
losses = [] | |
eers = [] | |
with torch.no_grad(): | |
for step, speaker_batch in enumerate(dev_loader, 1): | |
frames = torch.from_numpy(speaker_batch.data).to(device) | |
embeds = model.forward(frames) | |
embeds_loss = embeds.view((dev_batch, utterances_per_speaker, -1)).to(loss_device) | |
loss, eer = model.loss(embeds_loss) | |
losses.append(loss.item()) | |
eers.append(eer) | |
return sum(losses) / len(losses), sum(eers) / len(eers), embeds.detach() | |