Spaces:
Runtime error
Runtime error
import argparse | |
from ctypes import alignment | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
from pathlib import Path | |
import spacy | |
import time | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
parser.add_argument("--run_id", type=str, default="default", help= \ | |
"Name for this model. By default, training outputs will be stored to saved_models/<run_id>/. If a model state " | |
"from the same run ID was previously saved, the training will restart from there. Pass -f to overwrite saved " | |
"states and restart from scratch.") | |
parser.add_argument("-m", "--models_dir", type=Path, default="saved_models", | |
help="Directory containing all saved models") | |
parser.add_argument("--weight", type=float, default=1, | |
help="weight of input audio for voice filter") | |
parser.add_argument("--griffin_lim", | |
action="store_true", | |
help="if True, use griffin-lim, else use vocoder") | |
parser.add_argument("--cpu", action="store_true", help=\ | |
"If True, processing is done on CPU, even when a GPU is available.") | |
parser.add_argument("--no_sound", action="store_true", help=\ | |
"If True, audio won't be played.") | |
parser.add_argument("--seed", type=int, default=None, help=\ | |
"Optional random number seed value to make toolbox deterministic.") | |
args = parser.parse_args() | |
arg_dict = vars(args) | |
# print_args(args, parser) | |
# Hide GPUs from Pytorch to force CPU processing | |
if arg_dict.pop("cpu"): | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
print("Running a test of your configuration...\n") | |
import numpy as np | |
import soundfile as sf | |
import torch | |
import encoder.inference | |
import encoder.params_data | |
from synthesizer.inference import Synthesizer_infer | |
from synthesizer.utils.cleaners import add_breaks, english_cleaners_predict | |
from vocoder import inference as vocoder | |
from vocoder.display import save_attention_multiple, save_spectrogram, save_stop_tokens | |
from utils.argutils import print_args | |
from utils.default_models import ensure_default_models | |
from speed_changer.fixSpeed import * | |
if torch.cuda.is_available(): | |
device_id = torch.cuda.current_device() | |
gpu_properties = torch.cuda.get_device_properties(device_id) | |
## Print some environment information (for debugging purposes) | |
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " | |
"%.1fGb total memory.\n" % | |
(torch.cuda.device_count(), | |
device_id, | |
gpu_properties.name, | |
gpu_properties.major, | |
gpu_properties.minor, | |
gpu_properties.total_memory / 1e9)) | |
else: | |
print("Using CPU for inference.\n") | |
## Load the models one by one. | |
if not args.griffin_lim: | |
print("Preparing the encoder, the synthesizer and the vocoder...") | |
else: | |
print("Preparing the encoder and the synthesizer...") | |
ensure_default_models(args.run_id, Path("saved_models")) | |
encoder.inference.load_model(list(args.models_dir.glob(f"{args.run_id}/encoder.pt"))[0]) | |
synthesizer = Synthesizer_infer(list(args.models_dir.glob(f"{args.run_id}/synthesizer.pt"))[0]) | |
if not args.griffin_lim: | |
vocoder.load_model(list(args.models_dir.glob(f"{args.run_id}/vocoder.pt"))[0]) | |
# ## Run a test | |
# print("Testing your configuration with small inputs.") | |
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's | |
# # sampling rate, which may differ. | |
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats | |
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1. | |
# # The sampling rate is the number of values (samples) recorded per second, it is set to | |
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond | |
# # to an audio of 1 second. | |
# print("\tTesting the encoder...") | |
# encoder.embed_utterance(np.zeros(encoder.sampling_rate)) | |
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance | |
# # returns, but here we're going to make one ourselves just for the sake of showing that it's | |
# # possible. | |
# embed = np.random.rand(speaker_embedding_size) | |
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own | |
# # embeddings it will be). | |
# embed /= np.linalg.norm(embed) | |
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to | |
# # illustrate that | |
# embeds = [embed, np.zeros(speaker_embedding_size)] | |
# texts = ["test 1", "test 2"] | |
# print("\tTesting the synthesizer... (loading the model will output a lot of text)") | |
# mels = synthesizer.synthesize_spectrograms(texts, embeds) | |
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We | |
# # can concatenate the mel spectrograms to a single one. | |
# mel = np.concatenate(mels, axis=1) | |
# # The vocoder can take a callback function to display the generation. More on that later. For | |
# # now we'll simply hide it like this: | |
# if not args.griffin_lim: | |
# no_action = lambda *args: None | |
# print("\tTesting the vocoder...") | |
# # For the sake of making this test short, we'll pass a short target length. The target length | |
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled | |
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of | |
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and | |
# # that has a detrimental effect on the quality of the audio. The default parameters are | |
# # recommended in general. | |
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action) | |
# print("All test passed! You can now synthesize speech.\n\n") | |
## Interactive speech generation | |
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to " | |
"show how you can interface this project easily with your own. See the source code for " | |
"an explanation of what is happening.\n") | |
print("Interactive generation loop") | |
num_generated = 0 | |
nlp = spacy.load('en_core_web_sm') | |
weight = arg_dict["weight"] # 声音美颜的用户语音权重 | |
amp = 1 | |
while True: | |
# try: | |
# Get the reference audio filepath | |
num_of_input_audio = 1 | |
for i in range(num_of_input_audio): | |
# Computing the embedding | |
# First, we load the wav using the function that the speaker encoder provides. This is | |
# important: there is preprocessing that must be applied. | |
# The following two methods are equivalent: | |
# - Directly load from the filepath: | |
# preprocessed_wav = encoder.preprocess_wav(in_fpath) | |
# - If the wav is already loaded: | |
# get duration info from input audio | |
message2 = "Reference voice: enter an audio folder of a voice to be cloned (mp3, " \ | |
f"wav, m4a, flac, ...):({i+1}/{num_of_input_audio})\n" | |
in_fpath = Path(input(message2).replace("\"", "").replace("\'", "")) | |
fpath_without_ext = os.path.splitext(str(in_fpath))[0] | |
speaker_name = os.path.normpath(fpath_without_ext).split(os.sep)[-1] | |
is_wav_file, single_wav, wav_path = TransFormat(in_fpath, 'wav') | |
if not is_wav_file: | |
os.remove(wav_path) # remove intermediate wav files | |
# merge | |
if i == 0: | |
wav = single_wav | |
else: | |
wav = np.append(wav, single_wav) | |
# write to disk | |
path_ori, _ = os.path.split(wav_path) | |
file_ori = 'temp.wav' | |
fpath = os.path.join(path_ori, file_ori) | |
sf.write(fpath, wav, samplerate=encoder.params_data.sampling_rate) | |
# adjust the speed | |
totDur_ori, nPause_ori, arDur_ori, nSyl_ori, arRate_ori = AudioAnalysis(path_ori, file_ori) | |
DelFile(path_ori, '.TextGrid') | |
os.remove(fpath) | |
preprocessed_wav = encoder.inference.preprocess_wav(wav) | |
print("Loaded input audio file succesfully") | |
# Then we derive the embedding. There are many functions and parameters that the | |
# speaker encoder interfaces. These are mostly for in-depth research. You will typically | |
# only use this function (with its default parameters): | |
input_embed = encoder.inference.embed_utterance(preprocessed_wav) | |
# Choose standard audio | |
fft_max_freq = vocoder.get_dominant_freq(preprocessed_wav) | |
print(f"\nthe dominant frequency of input audio is {fft_max_freq}Hz") | |
if fft_max_freq < encoder.params_data.split_freq: | |
vocoder.hp.sex = 1 | |
standard_fpath = "standard_audios/male_1.wav" | |
else: | |
vocoder.hp.sex = 0 | |
standard_fpath = "standard_audios/female_1.wav" | |
if os.path.exists(standard_fpath): | |
standard_wav = Synthesizer_infer.load_preprocess_wav(standard_fpath) | |
preprocessed_standard_wav = encoder.inference.preprocess_wav(standard_wav) | |
print("Loaded standard audio file successfully") | |
standard_embed = encoder.inference.embed_utterance(preprocessed_standard_wav) | |
embed1=np.copy(input_embed).dot(weight) | |
embed2=np.copy(standard_embed).dot(1 - weight) | |
embed=embed1+embed2 | |
else: | |
embed = np.copy(input_embed) | |
embed[embed < encoder.params_data.set_zero_thres]=0 # 噪声值置零 | |
embed = embed * amp | |
start_syn = time.time() | |
# Generating the spectrogram | |
text = input("Write a sentence to be synthesized:\n") | |
# If seed is specified, reset torch seed and force synthesizer reload | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
synthesizer = Synthesizer_infer(args.syn_model_fpath) | |
# The synthesizer works in batch, so you need to put your data in a list or numpy array | |
def preprocess_text(text): | |
text = add_breaks(text) | |
text = english_cleaners_predict(text) | |
texts = [i.text.strip() for i in nlp(text).sents] # split paragraph to sentences | |
return texts | |
texts = preprocess_text(text) | |
print(f"the list of inputs texts:\n{texts}") | |
# embeds = [embed] * len(texts) | |
specs = [] | |
alignments = [] | |
stop_tokens = [] | |
for text in texts: | |
spec, align, stop_token = synthesizer.synthesize_spectrograms([text], [embed], require_visualization=True) | |
specs.append(spec[0]) | |
alignments.append(align[0]) | |
stop_tokens.append(stop_token[0]) | |
breaks = [spec.shape[1] for spec in specs] | |
spec = np.concatenate(specs, axis=1) | |
## Save synthesizer visualization results | |
if not os.path.exists("syn_results"): | |
os.mkdir("syn_results") | |
save_attention_multiple(alignments, "syn_results/attention") | |
save_stop_tokens(stop_tokens, "syn_results/stop_tokens") | |
save_spectrogram(spec, "syn_results/mel") | |
print("Created the mel spectrogram") | |
end_syn = time.time() | |
print(f"Prediction time of synthesizer is {end_syn - start_syn}s") | |
start_voc = time.time() | |
## Generating the waveform | |
print("Synthesizing the waveform:") | |
# If seed is specified, reset torch seed and reload vocoder | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
vocoder.load_model(args.voc_model_fpath) | |
# Synthesizing the waveform is fairly straightforward. Remember that the longer the | |
# spectrogram, the more time-efficient the vocoder. | |
if not args.griffin_lim: | |
wav = vocoder.infer_waveform(spec, target=vocoder.hp.voc_target, overlap=vocoder.hp.voc_overlap, crossfade=vocoder.hp.is_crossfade) | |
else: | |
wav = Synthesizer_infer.griffin_lim(spec) | |
end_voc = time.time() | |
print(f"Prediction time of vocoder is {end_voc - start_voc}s") | |
print(f"Prediction time of TTS is {end_voc - start_syn}s") | |
# Add breaks | |
b_ends = np.cumsum(np.array(breaks) * Synthesizer_infer.hparams.hop_size) | |
b_starts = np.concatenate(([0], b_ends[:-1])) | |
wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)] | |
breaks = [np.zeros(int(0.15 * Synthesizer_infer.sample_rate))] * len(breaks) | |
wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) | |
# Trim excess silences to compensate for gaps in spectrograms (issue #53) | |
# generated_wav = encoder.inference.preprocess_wav(wav) | |
wav = wav / np.abs(wav).max() * 4 | |
# Save it on the disk | |
# filename = "demo_output_%02d.wav" % num_generated | |
if not os.path.exists("out_audios"): | |
os.mkdir("out_audios") | |
dir_path = os.path.dirname(os.path.realpath(__file__)) # current dir | |
filename = os.path.join(dir_path, f"out_audios/{speaker_name}_syn.wav") | |
# print(wav.dtype) | |
sf.write(filename, wav.astype(np.float32), synthesizer.sample_rate) | |
num_generated += 1 | |
print("\nSaved output (havent't change speed) as %s\n\n" % filename) | |
# Fix Speed(generate new audio) | |
fix_file = work(totDur_ori, | |
nPause_ori, | |
arDur_ori, | |
nSyl_ori, | |
arRate_ori, | |
filename) | |
print(f"\nSaved output (fixed speed) as {fix_file}\n\n") | |
# # Play the audio (non-blocking) | |
# if not args.no_sound: | |
# import sounddevice as sd | |
# try: | |
# sd.stop() | |
# sd.play(wav, synthesizer.sample_rate) | |
# except sd.PortAudioError as e: | |
# print("\nCaught exception: %s" % repr(e)) | |
# print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n") | |
# except: | |
# raise | |
# except Exception as e: | |
# print("Caught exception: %s" % repr(e)) | |
# print("Restarting\n") | |