Spaces:
Runtime error
Runtime error
import os | |
## | |
# 获取全部环境变量 | |
env_vars = os.environ | |
# 遍历并打印环境变量 | |
for key, value in env_vars.items(): | |
print(f"{key}: {value}") | |
## | |
import subprocess | |
# 运行nvidia-smi | |
result = subprocess.run( | |
['nvidia-smi'], text=True | |
) | |
import spaces | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import torch | |
from modelscope import AutoModelForCausalLM, AutoTokenizer | |
from transformers import TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
## | |
# 检查CUDA是否可用 | |
def print_gpu(): | |
result = subprocess.run( | |
['nvidia-smi'], text=True | |
) | |
result = subprocess.run( | |
['ps', '-ef'], text=True | |
) | |
print("当前进程ID:", os.getpid()) | |
print("父进程ID:", os.getppid()) | |
if torch.cuda.is_available(): | |
print("CUDA is available. Listing available GPUs:") | |
# 获取并打印GPU数量 | |
num_gpus = torch.cuda.device_count() | |
for i in range(num_gpus): | |
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
# 其他相关信息,例如内存 | |
print(f" Memory Allocated: {torch.cuda.memory_allocated(i) / 1024 ** 2:.0f} MB") | |
print(f" Memory Reserved: {torch.cuda.memory_reserved(i) / 1024 ** 2:.0f} MB") | |
else: | |
print("CUDA is not available.") | |
## | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
print_gpu() | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8' | |
print_gpu() | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7,8,9,10,11,12,13,14' | |
print_gpu() | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "Qwen/Qwen1.5-14B-Chat" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
# print_gpu() | |
# conversation = [] | |
# if system_prompt: | |
# conversation.append({"role": "system", "content": system_prompt}) | |
# for user, assistant in chat_history: | |
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
# conversation.append({"role": "user", "content": message}) | |
# input_ids = tokenizer.apply_chat_template(conversation, tokenize=False,add_generation_prompt=True) | |
# input_ids = tokenizer([input_ids],return_tensors="pt").to(model.device) | |
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
# generate_kwargs = dict( | |
# input_ids=input_ids.input_ids, | |
# streamer=streamer, | |
# max_new_tokens=max_new_tokens, | |
# do_sample=True, | |
# top_p=top_p, | |
# top_k=top_k, | |
# temperature=temperature, | |
# repetition_penalty=repetition_penalty, | |
# ) | |
# t = Thread(target=model.generate, kwargs=generate_kwargs) | |
# t.start() | |
# #dictionary update sequence element #0 has length 19; 2 is required | |
# outputs = [] | |
# for text in streamer: | |
# outputs.append(text) | |
# yield "".join(outputs) | |
# #outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# print(outputs) | |
#yield outputs | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["你好!你是谁?"], | |
["请简单介绍一下大语言模型?"], | |
["请讲一个小人物成功的故事."], | |
["浙江的省会在哪里?"], | |
["写一篇100字的文章,题目是'人工智能开源的优势'"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""") | |
gr.Markdown("""<center><font size=8>Qwen1.5-1.8B-Chat Bot👾</center>""") | |
gr.Markdown("""<center><font size=4>通义千问1.5-1.8B(Qwen1.5-1.8B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。</center>""") | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |