Spaces:
Runtime error
Runtime error
from typing import Iterable, Optional | |
import types | |
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch import nn | |
from torch.cuda.amp import autocast | |
from funasr.metrics.compute_acc import compute_accuracy, th_accuracy | |
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr.train_utils.device_funcs import force_gatherable | |
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank | |
from funasr.utils.datadir_writer import DatadirWriter | |
from funasr.models.ctc.ctc import CTC | |
from funasr.register import tables | |
from funasr.models.paraformer.search import Hypothesis | |
class SinusoidalPositionEncoder(torch.nn.Module): | |
""" """ | |
def __int__(self, d_model=80, dropout_rate=0.1): | |
pass | |
def encode( | |
self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32 | |
): | |
batch_size = positions.size(0) | |
positions = positions.type(dtype) | |
device = positions.device | |
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype, device=device)) / ( | |
depth / 2 - 1 | |
) | |
inv_timescales = torch.exp( | |
torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment) | |
) | |
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) | |
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( | |
inv_timescales, [1, 1, -1] | |
) | |
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) | |
return encoding.type(dtype) | |
def forward(self, x): | |
batch_size, timesteps, input_dim = x.size() | |
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] | |
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) | |
return x + position_encoding | |
class PositionwiseFeedForward(torch.nn.Module): | |
"""Positionwise feed forward layer. | |
Args: | |
idim (int): Input dimenstion. | |
hidden_units (int): The number of hidden units. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim, hidden_units, dropout_rate, activation=torch.nn.ReLU()): | |
"""Construct an PositionwiseFeedForward object.""" | |
super(PositionwiseFeedForward, self).__init__() | |
self.w_1 = torch.nn.Linear(idim, hidden_units) | |
self.w_2 = torch.nn.Linear(hidden_units, idim) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
self.activation = activation | |
def forward(self, x): | |
"""Forward function.""" | |
return self.w_2(self.dropout(self.activation(self.w_1(x)))) | |
class MultiHeadedAttentionSANM(nn.Module): | |
"""Multi-Head Attention layer. | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__( | |
self, | |
n_head, | |
in_feat, | |
n_feat, | |
dropout_rate, | |
kernel_size, | |
sanm_shfit=0, | |
lora_list=None, | |
lora_rank=8, | |
lora_alpha=16, | |
lora_dropout=0.1, | |
): | |
"""Construct an MultiHeadedAttention object.""" | |
super().__init__() | |
assert n_feat % n_head == 0 | |
# We assume d_v always equals d_k | |
self.d_k = n_feat // n_head | |
self.h = n_head | |
# self.linear_q = nn.Linear(n_feat, n_feat) | |
# self.linear_k = nn.Linear(n_feat, n_feat) | |
# self.linear_v = nn.Linear(n_feat, n_feat) | |
self.linear_out = nn.Linear(n_feat, n_feat) | |
self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) | |
self.attn = None | |
self.dropout = nn.Dropout(p=dropout_rate) | |
self.fsmn_block = nn.Conv1d( | |
n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False | |
) | |
# padding | |
left_padding = (kernel_size - 1) // 2 | |
if sanm_shfit > 0: | |
left_padding = left_padding + sanm_shfit | |
right_padding = kernel_size - 1 - left_padding | |
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) | |
def forward_fsmn(self, inputs, mask, mask_shfit_chunk=None): | |
b, t, d = inputs.size() | |
if mask is not None: | |
mask = torch.reshape(mask, (b, -1, 1)) | |
if mask_shfit_chunk is not None: | |
mask = mask * mask_shfit_chunk | |
inputs = inputs * mask | |
x = inputs.transpose(1, 2) | |
x = self.pad_fn(x) | |
x = self.fsmn_block(x) | |
x = x.transpose(1, 2) | |
x += inputs | |
x = self.dropout(x) | |
if mask is not None: | |
x = x * mask | |
return x | |
def forward_qkv(self, x): | |
"""Transform query, key and value. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
Returns: | |
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). | |
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). | |
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). | |
""" | |
b, t, d = x.size() | |
q_k_v = self.linear_q_k_v(x) | |
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1) | |
q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose( | |
1, 2 | |
) # (batch, head, time1, d_k) | |
k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose( | |
1, 2 | |
) # (batch, head, time2, d_k) | |
v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose( | |
1, 2 | |
) # (batch, head, time2, d_k) | |
return q_h, k_h, v_h, v | |
def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None): | |
"""Compute attention context vector. | |
Args: | |
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). | |
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). | |
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). | |
Returns: | |
torch.Tensor: Transformed value (#batch, time1, d_model) | |
weighted by the attention score (#batch, time1, time2). | |
""" | |
n_batch = value.size(0) | |
if mask is not None: | |
if mask_att_chunk_encoder is not None: | |
mask = mask * mask_att_chunk_encoder | |
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) | |
min_value = -float( | |
"inf" | |
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min) | |
scores = scores.masked_fill(mask, min_value) | |
self.attn = torch.softmax(scores, dim=-1).masked_fill( | |
mask, 0.0 | |
) # (batch, head, time1, time2) | |
else: | |
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) | |
p_attn = self.dropout(self.attn) | |
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) | |
x = ( | |
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) | |
) # (batch, time1, d_model) | |
return self.linear_out(x) # (batch, time1, d_model) | |
def forward(self, x, mask, mask_shfit_chunk=None, mask_att_chunk_encoder=None): | |
"""Compute scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
""" | |
q_h, k_h, v_h, v = self.forward_qkv(x) | |
fsmn_memory = self.forward_fsmn(v, mask, mask_shfit_chunk) | |
q_h = q_h * self.d_k ** (-0.5) | |
scores = torch.matmul(q_h, k_h.transpose(-2, -1)) | |
att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder) | |
return att_outs + fsmn_memory | |
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): | |
"""Compute scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
""" | |
q_h, k_h, v_h, v = self.forward_qkv(x) | |
if chunk_size is not None and look_back > 0 or look_back == -1: | |
if cache is not None: | |
k_h_stride = k_h[:, :, : -(chunk_size[2]), :] | |
v_h_stride = v_h[:, :, : -(chunk_size[2]), :] | |
k_h = torch.cat((cache["k"], k_h), dim=2) | |
v_h = torch.cat((cache["v"], v_h), dim=2) | |
cache["k"] = torch.cat((cache["k"], k_h_stride), dim=2) | |
cache["v"] = torch.cat((cache["v"], v_h_stride), dim=2) | |
if look_back != -1: | |
cache["k"] = cache["k"][:, :, -(look_back * chunk_size[1]) :, :] | |
cache["v"] = cache["v"][:, :, -(look_back * chunk_size[1]) :, :] | |
else: | |
cache_tmp = { | |
"k": k_h[:, :, : -(chunk_size[2]), :], | |
"v": v_h[:, :, : -(chunk_size[2]), :], | |
} | |
cache = cache_tmp | |
fsmn_memory = self.forward_fsmn(v, None) | |
q_h = q_h * self.d_k ** (-0.5) | |
scores = torch.matmul(q_h, k_h.transpose(-2, -1)) | |
att_outs = self.forward_attention(v_h, scores, None) | |
return att_outs + fsmn_memory, cache | |
class LayerNorm(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, input): | |
output = F.layer_norm( | |
input.float(), | |
self.normalized_shape, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
) | |
return output.type_as(input) | |
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None): | |
if maxlen is None: | |
maxlen = lengths.max() | |
row_vector = torch.arange(0, maxlen, 1).to(lengths.device) | |
matrix = torch.unsqueeze(lengths, dim=-1) | |
mask = row_vector < matrix | |
mask = mask.detach() | |
return mask.type(dtype).to(device) if device is not None else mask.type(dtype) | |
class EncoderLayerSANM(nn.Module): | |
def __init__( | |
self, | |
in_size, | |
size, | |
self_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
stochastic_depth_rate=0.0, | |
): | |
"""Construct an EncoderLayer object.""" | |
super(EncoderLayerSANM, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(in_size) | |
self.norm2 = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.in_size = in_size | |
self.size = size | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
self.dropout_rate = dropout_rate | |
def forward(self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None): | |
"""Compute encoded features. | |
Args: | |
x_input (torch.Tensor): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
skip_layer = False | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
stoch_layer_coeff = 1.0 | |
if self.training and self.stochastic_depth_rate > 0: | |
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
if skip_layer: | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
if self.concat_after: | |
x_concat = torch.cat( | |
( | |
x, | |
self.self_attn( | |
x, | |
mask, | |
mask_shfit_chunk=mask_shfit_chunk, | |
mask_att_chunk_encoder=mask_att_chunk_encoder, | |
), | |
), | |
dim=-1, | |
) | |
if self.in_size == self.size: | |
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
x = stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
if self.in_size == self.size: | |
x = residual + stoch_layer_coeff * self.dropout( | |
self.self_attn( | |
x, | |
mask, | |
mask_shfit_chunk=mask_shfit_chunk, | |
mask_att_chunk_encoder=mask_att_chunk_encoder, | |
) | |
) | |
else: | |
x = stoch_layer_coeff * self.dropout( | |
self.self_attn( | |
x, | |
mask, | |
mask_shfit_chunk=mask_shfit_chunk, | |
mask_att_chunk_encoder=mask_att_chunk_encoder, | |
) | |
) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder | |
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): | |
"""Compute encoded features. | |
Args: | |
x_input (torch.Tensor): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
if self.in_size == self.size: | |
attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) | |
x = residual + attn | |
else: | |
x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + self.feed_forward(x) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
return x, cache | |
class SenseVoiceEncoderSmall(nn.Module): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition | |
https://arxiv.org/abs/2006.01713 | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
tp_blocks: int = 0, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
stochastic_depth_rate: float = 0.0, | |
input_layer: Optional[str] = "conv2d", | |
pos_enc_class=SinusoidalPositionEncoder, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
positionwise_layer_type: str = "linear", | |
positionwise_conv_kernel_size: int = 1, | |
padding_idx: int = -1, | |
kernel_size: int = 11, | |
sanm_shfit: int = 0, | |
selfattention_layer_type: str = "sanm", | |
**kwargs, | |
): | |
super().__init__() | |
self._output_size = output_size | |
self.embed = SinusoidalPositionEncoder() | |
self.normalize_before = normalize_before | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
) | |
encoder_selfattn_layer = MultiHeadedAttentionSANM | |
encoder_selfattn_layer_args0 = ( | |
attention_heads, | |
input_size, | |
output_size, | |
attention_dropout_rate, | |
kernel_size, | |
sanm_shfit, | |
) | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
output_size, | |
attention_dropout_rate, | |
kernel_size, | |
sanm_shfit, | |
) | |
self.encoders0 = nn.ModuleList( | |
[ | |
EncoderLayerSANM( | |
input_size, | |
output_size, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args0), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
) | |
for i in range(1) | |
] | |
) | |
self.encoders = nn.ModuleList( | |
[ | |
EncoderLayerSANM( | |
output_size, | |
output_size, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
) | |
for i in range(num_blocks - 1) | |
] | |
) | |
self.tp_encoders = nn.ModuleList( | |
[ | |
EncoderLayerSANM( | |
output_size, | |
output_size, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
) | |
for i in range(tp_blocks) | |
] | |
) | |
self.after_norm = LayerNorm(output_size) | |
self.tp_norm = LayerNorm(output_size) | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
): | |
"""Embed positions in tensor.""" | |
masks = sequence_mask(ilens, device=ilens.device)[:, None, :] | |
xs_pad *= self.output_size() ** 0.5 | |
xs_pad = self.embed(xs_pad) | |
# forward encoder1 | |
for layer_idx, encoder_layer in enumerate(self.encoders0): | |
encoder_outs = encoder_layer(xs_pad, masks) | |
xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
for layer_idx, encoder_layer in enumerate(self.encoders): | |
encoder_outs = encoder_layer(xs_pad, masks) | |
xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
xs_pad = self.after_norm(xs_pad) | |
# forward encoder2 | |
olens = masks.squeeze(1).sum(1).int() | |
for layer_idx, encoder_layer in enumerate(self.tp_encoders): | |
encoder_outs = encoder_layer(xs_pad, masks) | |
xs_pad, masks = encoder_outs[0], encoder_outs[1] | |
xs_pad = self.tp_norm(xs_pad) | |
return xs_pad, olens | |
class SenseVoiceSmall(nn.Module): | |
"""CTC-attention hybrid Encoder-Decoder model""" | |
def __init__( | |
self, | |
specaug: str = None, | |
specaug_conf: dict = None, | |
normalize: str = None, | |
normalize_conf: dict = None, | |
encoder: str = None, | |
encoder_conf: dict = None, | |
ctc_conf: dict = None, | |
input_size: int = 80, | |
vocab_size: int = -1, | |
ignore_id: int = -1, | |
blank_id: int = 0, | |
sos: int = 1, | |
eos: int = 2, | |
length_normalized_loss: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
if specaug is not None: | |
specaug_class = tables.specaug_classes.get(specaug) | |
specaug = specaug_class(**specaug_conf) | |
if normalize is not None: | |
normalize_class = tables.normalize_classes.get(normalize) | |
normalize = normalize_class(**normalize_conf) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(input_size=input_size, **encoder_conf) | |
encoder_output_size = encoder.output_size() | |
if ctc_conf is None: | |
ctc_conf = {} | |
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf) | |
self.blank_id = blank_id | |
self.sos = sos if sos is not None else vocab_size - 1 | |
self.eos = eos if eos is not None else vocab_size - 1 | |
self.vocab_size = vocab_size | |
self.ignore_id = ignore_id | |
self.specaug = specaug | |
self.normalize = normalize | |
self.encoder = encoder | |
self.error_calculator = None | |
self.ctc = ctc | |
self.length_normalized_loss = length_normalized_loss | |
self.encoder_output_size = encoder_output_size | |
self.lid_dict = {"auto": 0, "zh": 3, "en": 4, "yue": 7, "ja": 11, "ko": 12, "nospeech": 13} | |
self.lid_int_dict = {24884: 3, 24885: 4, 24888: 7, 24892: 11, 24896: 12, 24992: 13} | |
self.textnorm_dict = {"withitn": 14, "woitn": 15} | |
self.textnorm_int_dict = {25016: 14, 25017: 15} | |
self.embed = torch.nn.Embedding(7 + len(self.lid_dict) + len(self.textnorm_dict), input_size) | |
self.criterion_att = LabelSmoothingLoss( | |
size=self.vocab_size, | |
padding_idx=self.ignore_id, | |
smoothing=kwargs.get("lsm_weight", 0.0), | |
normalize_length=self.length_normalized_loss, | |
) | |
def from_pretrained(model:str=None, **kwargs): | |
from funasr import AutoModel | |
model, kwargs = AutoModel.build_model(model=model, trust_remote_code=True, **kwargs) | |
return model, kwargs | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
): | |
"""Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
# import pdb; | |
# pdb.set_trace() | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# 1. Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, text) | |
loss_ctc, cer_ctc = None, None | |
loss_rich, acc_rich = None, None | |
stats = dict() | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out[:, 4:, :], encoder_out_lens - 4, text[:, 4:], text_lengths - 4 | |
) | |
loss_rich, acc_rich = self._calc_rich_ce_loss( | |
encoder_out[:, :4, :], text[:, :4] | |
) | |
loss = loss_ctc | |
# Collect total loss stats | |
stats["loss"] = torch.clone(loss.detach()) if loss_ctc is not None else None | |
stats["loss_rich"] = torch.clone(loss_rich.detach()) if loss_rich is not None else None | |
stats["acc_rich"] = acc_rich | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = int((text_lengths + 1).sum()) | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
**kwargs, | |
): | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
lids = torch.LongTensor([[self.lid_int_dict[int(lid)] if torch.rand(1) > 0.2 and int(lid) in self.lid_int_dict else 0 ] for lid in text[:, 0]]).to(speech.device) | |
language_query = self.embed(lids) | |
styles = torch.LongTensor([[self.textnorm_int_dict[int(style)]] for style in text[:, 3]]).to(speech.device) | |
style_query = self.embed(styles) | |
speech = torch.cat((style_query, speech), dim=1) | |
speech_lengths += 1 | |
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(speech.size(0), 1, 1) | |
input_query = torch.cat((language_query, event_emo_query), dim=1) | |
speech = torch.cat((input_query, speech), dim=1) | |
speech_lengths += 3 | |
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) | |
return encoder_out, encoder_out_lens | |
def _calc_ctc_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
# Calc CTC loss | |
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) | |
# Calc CER using CTC | |
cer_ctc = None | |
if not self.training and self.error_calculator is not None: | |
ys_hat = self.ctc.argmax(encoder_out).data | |
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) | |
return loss_ctc, cer_ctc | |
def _calc_rich_ce_loss( | |
self, | |
encoder_out: torch.Tensor, | |
ys_pad: torch.Tensor, | |
): | |
decoder_out = self.ctc.ctc_lo(encoder_out) | |
# 2. Compute attention loss | |
loss_rich = self.criterion_att(decoder_out, ys_pad.contiguous()) | |
acc_rich = th_accuracy( | |
decoder_out.view(-1, self.vocab_size), | |
ys_pad.contiguous(), | |
ignore_label=self.ignore_id, | |
) | |
return loss_rich, acc_rich | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = ["wav_file_tmp_name"], | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
meta_data = {} | |
if ( | |
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" | |
): # fbank | |
speech, speech_lengths = data_in, data_lengths | |
if len(speech.shape) < 3: | |
speech = speech[None, :, :] | |
if speech_lengths is None: | |
speech_lengths = speech.shape[1] | |
else: | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
language = kwargs.get("language", "auto") | |
language_query = self.embed( | |
torch.LongTensor( | |
[[self.lid_dict[language] if language in self.lid_dict else 0]] | |
).to(speech.device) | |
).repeat(speech.size(0), 1, 1) | |
use_itn = kwargs.get("use_itn", False) | |
textnorm = kwargs.get("text_norm", None) | |
if textnorm is None: | |
textnorm = "withitn" if use_itn else "woitn" | |
textnorm_query = self.embed( | |
torch.LongTensor([[self.textnorm_dict[textnorm]]]).to(speech.device) | |
).repeat(speech.size(0), 1, 1) | |
speech = torch.cat((textnorm_query, speech), dim=1) | |
speech_lengths += 1 | |
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat( | |
speech.size(0), 1, 1 | |
) | |
input_query = torch.cat((language_query, event_emo_query), dim=1) | |
speech = torch.cat((input_query, speech), dim=1) | |
speech_lengths += 3 | |
# Encoder | |
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# c. Passed the encoder result and the beam search | |
ctc_logits = self.ctc.log_softmax(encoder_out) | |
results = [] | |
b, n, d = encoder_out.size() | |
if isinstance(key[0], (list, tuple)): | |
key = key[0] | |
if len(key) < b: | |
key = key * b | |
for i in range(b): | |
x = ctc_logits[i, : encoder_out_lens[i].item(), :] | |
yseq = x.argmax(dim=-1) | |
yseq = torch.unique_consecutive(yseq, dim=-1) | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"1best_recog"] | |
mask = yseq != self.blank_id | |
token_int = yseq[mask].tolist() | |
# Change integer-ids to tokens | |
text = tokenizer.decode(token_int) | |
result_i = {"key": key[i], "text": text} | |
results.append(result_i) | |
if ibest_writer is not None: | |
ibest_writer["text"][key[i]] = text | |
return results, meta_data | |
def export(self, **kwargs): | |
from .export_meta import export_rebuild_model | |
if "max_seq_len" not in kwargs: | |
kwargs["max_seq_len"] = 512 | |
models = export_rebuild_model(model=self, **kwargs) | |
return models | |