Spaces:
Running
on
Zero
Running
on
Zero
init
Browse files- .gitignore +1 -0
- app.py +137 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv/
|
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from pydub import AudioSegment
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
is_hf = os.getenv("SYSTEM") == "spaces"
|
9 |
+
|
10 |
+
generate_kwargs = {
|
11 |
+
"language": "Japanese",
|
12 |
+
"do_sample": False,
|
13 |
+
"num_beams": 1,
|
14 |
+
"no_repeat_ngram_size": 3,
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
model_dict = {
|
19 |
+
"whisper-large-v2": "openai/whisper-large-v2",
|
20 |
+
"whisper-large-v3": "openai/whisper-large-v3",
|
21 |
+
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
|
22 |
+
"kotoba-whisper-v1.0": "kotoba-tech/kotoba-whisper-v1.0",
|
23 |
+
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
|
24 |
+
"galgame-whisper-wip": (
|
25 |
+
"litagin/galgame-whisper-wip"
|
26 |
+
if is_hf
|
27 |
+
else "../whisper_finetune/galgame-whisper"
|
28 |
+
),
|
29 |
+
}
|
30 |
+
|
31 |
+
# Download models
|
32 |
+
for model in model_dict.values():
|
33 |
+
pipeline("automatic-speech-recognition", model=model)
|
34 |
+
|
35 |
+
|
36 |
+
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
|
37 |
+
# Get duration of audio
|
38 |
+
duration = AudioSegment.from_file(audio).duration_seconds
|
39 |
+
if duration > 15:
|
40 |
+
return "Audio too long, limit is 15 seconds", 0
|
41 |
+
start_time = time.time()
|
42 |
+
pipe = pipeline("automatic-speech-recognition", model=model)
|
43 |
+
end_time = time.time()
|
44 |
+
return pipe(audio, generate_kwargs=generate_kwargs)["text"], end_time - start_time
|
45 |
+
|
46 |
+
|
47 |
+
def transcribe_large_v2(audio) -> tuple[str, float]:
|
48 |
+
return transcribe_common(audio, model_dict["whisper-large-v2"])
|
49 |
+
|
50 |
+
|
51 |
+
def transcribe_large_v3(audio) -> tuple[str, float]:
|
52 |
+
return transcribe_common(audio, model_dict["whisper-large-v3"])
|
53 |
+
|
54 |
+
|
55 |
+
def transcribe_large_v3_turbo(audio) -> tuple[str, float]:
|
56 |
+
return transcribe_common(audio, model_dict["whisper-large-v3-turbo"])
|
57 |
+
|
58 |
+
|
59 |
+
def transcribe_kotoba_v1(audio) -> tuple[str, float]:
|
60 |
+
return transcribe_common(audio, model_dict["kotoba-whisper-v1.0"])
|
61 |
+
|
62 |
+
|
63 |
+
def transcribe_kotoba_v2(audio) -> tuple[str, float]:
|
64 |
+
return transcribe_common(audio, model_dict["kotoba-whisper-v2.0"])
|
65 |
+
|
66 |
+
|
67 |
+
def transcribe_galgame_whisper(audio) -> tuple[str, float]:
|
68 |
+
return transcribe_common(audio, model_dict["galgame-whisper-wip"])
|
69 |
+
|
70 |
+
|
71 |
+
initial_md = """
|
72 |
+
# Galgame-Whisper (WIP) Demo
|
73 |
+
|
74 |
+
- 日本語のみ対応
|
75 |
+
- 他の書き起こしとついでに比較できるようにいろいろ入れた
|
76 |
+
- 現在0.1エポックくらい
|
77 |
+
- 速度はCPUです
|
78 |
+
- 音声は15秒まで
|
79 |
+
"""
|
80 |
+
|
81 |
+
with gr.Blocks() as app:
|
82 |
+
audio = gr.Audio(type="filepath")
|
83 |
+
gr.Markdown("### Kotoba-Whisper-V1.0")
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
gr.Markdown("### Whisper-Large-V2")
|
87 |
+
button_v2 = gr.Button("Transcribe with Whisper-Large-V2")
|
88 |
+
output_v2 = gr.Textbox()
|
89 |
+
time_v2 = gr.Textbox("Time taken")
|
90 |
+
with gr.Column():
|
91 |
+
gr.Markdown("### Whisper-Large-V3")
|
92 |
+
button_v3 = gr.Button("Transcribe with Whisper-Large-V3")
|
93 |
+
output_v3 = gr.Textbox()
|
94 |
+
time_v3 = gr.Textbox("Time taken")
|
95 |
+
with gr.Column():
|
96 |
+
gr.Markdown("### Whisper-Large-V3-Turbo")
|
97 |
+
button_v3_turbo = gr.Button("Transcribe with Whisper-Large-V3-Turbo")
|
98 |
+
output_v3_turbo = gr.Textbox()
|
99 |
+
time_v3_turbo = gr.Textbox()
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column():
|
102 |
+
gr.Markdown("### Kotoba-Whisper-V1.0")
|
103 |
+
button_kotoba_v1 = gr.Button("Transcribe with Kotoba-Whisper-V1.0")
|
104 |
+
output_kotoba_v1 = gr.Textbox()
|
105 |
+
time_kotoba_v1 = gr.Textbox("Time taken")
|
106 |
+
with gr.Column():
|
107 |
+
gr.Markdown("### Kotoba-Whisper-V2.0")
|
108 |
+
button_kotoba_v2 = gr.Button("Transcribe with Kotoba-Whisper-V2.0")
|
109 |
+
output_kotoba_v2 = gr.Textbox()
|
110 |
+
time_kotoba_v2 = gr.Textbox("Time taken")
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
gr.Markdown("### Galgame-Whisper (WIP)")
|
114 |
+
button_galgame = gr.Button("Transcribe with Galgame-Whisper (WIP)")
|
115 |
+
output_galgame = gr.Textbox()
|
116 |
+
time_galgame = gr.Textbox("Time taken")
|
117 |
+
|
118 |
+
button_v2.click(transcribe_large_v2, inputs=audio, outputs=[output_v2, time_v2])
|
119 |
+
button_v3.click(transcribe_large_v3, inputs=audio, outputs=[output_v3, time_v3])
|
120 |
+
button_v3_turbo.click(
|
121 |
+
transcribe_large_v3_turbo,
|
122 |
+
inputs=audio,
|
123 |
+
outputs=[output_v3_turbo, time_v3_turbo],
|
124 |
+
)
|
125 |
+
button_kotoba_v1.click(
|
126 |
+
transcribe_kotoba_v1, inputs=audio, outputs=[output_kotoba_v1, time_kotoba_v1]
|
127 |
+
)
|
128 |
+
button_kotoba_v2.click(
|
129 |
+
transcribe_kotoba_v2, inputs=audio, outputs=[output_kotoba_v2, time_kotoba_v2]
|
130 |
+
)
|
131 |
+
button_galgame.click(
|
132 |
+
transcribe_galgame_whisper,
|
133 |
+
inputs=audio,
|
134 |
+
outputs=[output_galgame, time_galgame],
|
135 |
+
)
|
136 |
+
|
137 |
+
app.launch(inbrowser=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
numpy<2
|
3 |
+
torch
|
4 |
+
transformers
|