lisonallen's picture
修复Stateless GPU环境中CUDA初始化问题
cdbfba8
# By lllyasviel
import torch
import os
# 检查是否在Hugging Face Space环境中
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# 设置CPU设备
cpu = torch.device('cpu')
# 在Stateless GPU环境中,不要在主进程初始化CUDA
def get_gpu_device():
if IN_HF_SPACE:
# 在Spaces中将延迟初始化GPU设备
return 'cuda' # 返回字符串,而不是实际初始化设备
# 非Spaces环境正常初始化
try:
if torch.cuda.is_available():
return torch.device(f'cuda:{torch.cuda.current_device()}')
else:
print("CUDA不可用,使用CPU作为默认设备")
return torch.device('cpu')
except Exception as e:
print(f"初始化CUDA设备时出错: {e}")
print("回退到CPU设备")
return torch.device('cpu')
# 保存一个字符串表示,而不是实际的设备对象
gpu = get_gpu_device()
gpu_complete_modules = []
class DynamicSwapInstaller:
@staticmethod
def _install_module(module: torch.nn.Module, **kwargs):
original_class = module.__class__
module.__dict__['forge_backup_original_class'] = original_class
def hacked_get_attr(self, name: str):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
p = _parameters[name]
if p is None:
return None
if p.__class__ == torch.nn.Parameter:
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
else:
return p.to(**kwargs)
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name].to(**kwargs)
return super(original_class, self).__getattr__(name)
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
'__getattr__': hacked_get_attr,
})
return
@staticmethod
def _uninstall_module(module: torch.nn.Module):
if 'forge_backup_original_class' in module.__dict__:
module.__class__ = module.__dict__.pop('forge_backup_original_class')
return
@staticmethod
def install_model(model: torch.nn.Module, **kwargs):
for m in model.modules():
DynamicSwapInstaller._install_module(m, **kwargs)
return
@staticmethod
def uninstall_model(model: torch.nn.Module):
for m in model.modules():
DynamicSwapInstaller._uninstall_module(m)
return
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
# 转换字符串设备为torch.device
if isinstance(target_device, str):
target_device = torch.device(target_device)
if hasattr(model, 'scale_shift_table'):
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
return
for k, p in model.named_modules():
if hasattr(p, 'weight'):
p.to(target_device)
return
def get_cuda_free_memory_gb(device=None):
if device is None:
device = gpu
# 如果是字符串,转换为设备
if isinstance(device, str):
device = torch.device(device)
# 如果不是CUDA设备,返回默认值
if device.type != 'cuda':
print("无法获取非CUDA设备的内存信息,返回默认值")
return 6.0 # 返回一个默认值
try:
memory_stats = torch.cuda.memory_stats(device)
bytes_active = memory_stats['active_bytes.all.current']
bytes_reserved = memory_stats['reserved_bytes.all.current']
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
bytes_inactive_reserved = bytes_reserved - bytes_active
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
return bytes_total_available / (1024 ** 3)
except Exception as e:
print(f"获取CUDA内存信息时出错: {e}")
return 6.0 # 返回一个默认值
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
# 如果是字符串,转换为设备
if isinstance(target_device, str):
target_device = torch.device(target_device)
# 如果gpu是字符串,转换为设备
gpu_device = gpu
if isinstance(gpu_device, str):
gpu_device = torch.device(gpu_device)
# 如果目标设备是CPU或当前在CPU上,直接移动
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
model.to(device=target_device)
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return
for m in model.modules():
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
torch.cuda.empty_cache()
return
if hasattr(m, 'weight'):
m.to(device=target_device)
model.to(device=target_device)
torch.cuda.empty_cache()
return
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
# 如果是字符串,转换为设备
if isinstance(target_device, str):
target_device = torch.device(target_device)
# 如果gpu是字符串,转换为设备
gpu_device = gpu
if isinstance(gpu_device, str):
gpu_device = torch.device(gpu_device)
# 如果目标设备是CPU或当前在CPU上,直接处理
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
model.to(device=cpu)
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return
for m in model.modules():
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
torch.cuda.empty_cache()
return
if hasattr(m, 'weight'):
m.to(device=cpu)
model.to(device=cpu)
torch.cuda.empty_cache()
return
def unload_complete_models(*args):
for m in gpu_complete_modules + list(args):
m.to(device=cpu)
print(f'Unloaded {m.__class__.__name__} as complete.')
gpu_complete_modules.clear()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return
def load_model_as_complete(model, target_device, unload=True):
# 如果是字符串,转换为设备
if isinstance(target_device, str):
target_device = torch.device(target_device)
if unload:
unload_complete_models()
model.to(device=target_device)
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
gpu_complete_modules.append(model)
return