Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
try: | |
import _freqencoder as _backend | |
except ImportError: | |
from .backend import _backend | |
class _freq_encoder(Function): | |
# force float32 for better precision | |
def forward(ctx, inputs, degree, output_dim): | |
# inputs: [B, input_dim], float | |
# RETURN: [B, F], float | |
if not inputs.is_cuda: inputs = inputs.cuda() | |
inputs = inputs.contiguous() | |
B, input_dim = inputs.shape # batch size, coord dim | |
outputs = torch.empty(B, output_dim, dtype=inputs.dtype, device=inputs.device) | |
_backend.freq_encode_forward(inputs, B, input_dim, degree, output_dim, outputs) | |
ctx.save_for_backward(inputs, outputs) | |
ctx.dims = [B, input_dim, degree, output_dim] | |
return outputs | |
#@once_differentiable | |
def backward(ctx, grad): | |
# grad: [B, C * C] | |
grad = grad.contiguous() | |
inputs, outputs = ctx.saved_tensors | |
B, input_dim, degree, output_dim = ctx.dims | |
grad_inputs = torch.zeros_like(inputs) | |
_backend.freq_encode_backward(grad, outputs, B, input_dim, degree, output_dim, grad_inputs) | |
return grad_inputs, None, None | |
freq_encode = _freq_encoder.apply | |
class FreqEncoder(nn.Module): | |
def __init__(self, input_dim=3, degree=4): | |
super().__init__() | |
self.input_dim = input_dim | |
self.degree = degree | |
self.output_dim = input_dim + input_dim * 2 * degree | |
def __repr__(self): | |
return f"FreqEncoder: input_dim={self.input_dim} degree={self.degree} output_dim={self.output_dim}" | |
def forward(self, inputs, **kwargs): | |
# inputs: [..., input_dim] | |
# return: [..., ] | |
prefix_shape = list(inputs.shape[:-1]) | |
inputs = inputs.reshape(-1, self.input_dim) | |
outputs = freq_encode(inputs, self.degree, self.output_dim) | |
outputs = outputs.reshape(prefix_shape + [self.output_dim]) | |
return outputs |