Linly-Talker / LLM /Linly.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
import os
import torch
import requests
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
from configs import ip, api_port, model_path
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
class Linly:
def __init__(self, mode='api', model_path="Linly-AI/Chinese-LLaMA-2-7B-hf", prefix_prompt = '''请用少于25个字回答以下问题\n\n'''):
# mode = api need
# 定义设置的api的服务器,首先记得运行Linly-api-fast.py 填入ip地址和端口号
self.url = f"http://{ip}:{api_port}" # local server: http://ip:port
self.headers = {
"Content-Type": "application/json"
}
self.data = {
"question": "北京有什么好玩的地方?"
}
# 全局设定的prompt
self.prefix_prompt = prefix_prompt
self.mode = mode
if mode != 'api':
self.model, self.tokenizer = self.init_model(model_path)
self.history = []
def init_model(self, path = "Linly-AI/Chinese-LLaMA-2-7B-hf"):
model = AutoModelForCausalLM.from_pretrained(path, device_map="cuda:0",
torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=False, trust_remote_code=True)
return model, tokenizer
def generate(self, question, system_prompt=""):
if self.mode != 'api':
self.data["question"] = self.message_to_prompt(question, system_prompt)
inputs = self.tokenizer(self.data["question"], return_tensors="pt").to("cuda:0")
try:
generate_ids = self.model.generate(inputs.input_ids,
max_new_tokens=2048,
do_sample=True,
top_k=20,
top_p=0.84,
temperature=1,
repetition_penalty=1.15,
eos_token_id=2,
bos_token_id=1,
pad_token_id=0)
response = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = response.split("### Response:")[-1]
return response
except:
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
elif self.mode == 'api':
return self.predict_api(question)
def message_to_prompt(self, message, system_prompt=""):
system_prompt = self.prefix_prompt + system_prompt
for interaction in self.history:
user_prompt, bot_prompt = str(interaction[0]).strip(' '), str(interaction[1]).strip(' ')
system_prompt = f"{system_prompt} User: {user_prompt} Bot: {bot_prompt}"
prompt = f"{system_prompt} ### Instruction:{message.strip()} ### Response:"
return prompt
def predict_api(self, question):
# FastAPI Predict 调用API来进行预测
self.data["question"] = question
headers = {'Content-Type': 'application/json'}
data = {"prompt": question}
response = requests.post(url=self.url, headers=headers, data=json.dumps(data))
return response.json()['response']
def chat(self, system_prompt, message, history):
self.history = history
prompt = self.message_to_prompt(message, system_prompt)
response = self.generate(prompt)
self.history.append([message, response])
return response, self.history
def clear_history(self):
# 清空历史记录
self.history = []
def test():
llm = Linly(mode='offline',model_path='../Linly-AI/Chinese-LLaMA-2-7B-hf')
answer = llm.generate("如何应对压力?")
print(answer)
if __name__ == '__main__':
test()