Spaces:
Running
Running
import utils, os | |
hps = utils.get_hparams(stage=2) | |
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") | |
import torch | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import torch.multiprocessing as mp | |
import torch.distributed as dist, traceback | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.cuda.amp import autocast, GradScaler | |
from tqdm import tqdm | |
import logging, traceback | |
logging.getLogger("matplotlib").setLevel(logging.INFO) | |
logging.getLogger("h5py").setLevel(logging.INFO) | |
logging.getLogger("numba").setLevel(logging.INFO) | |
from random import randint | |
from module import commons | |
from module.data_utils import ( | |
TextAudioSpeakerLoader, | |
TextAudioSpeakerCollate, | |
DistributedBucketSampler, | |
) | |
from module.models import ( | |
SynthesizerTrn, | |
MultiPeriodDiscriminator, | |
) | |
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss | |
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
from process_ckpt import savee | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = False | |
###反正A100fp32更快,那试试tf32吧 | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响 | |
# from config import pretrained_s2G,pretrained_s2D | |
global_step = 0 | |
def main(): | |
"""Assume Single Node Multi GPUs Training Only""" | |
assert torch.cuda.is_available() or torch.backends.mps.is_available(), "Only GPU training is allowed." | |
if torch.backends.mps.is_available(): | |
n_gpus = 1 | |
else: | |
n_gpus = torch.cuda.device_count() | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) | |
mp.spawn( | |
run, | |
nprocs=n_gpus, | |
args=( | |
n_gpus, | |
hps, | |
), | |
) | |
def run(rank, n_gpus, hps): | |
global global_step | |
if rank == 0: | |
logger = utils.get_logger(hps.data.exp_dir) | |
logger.info(hps) | |
# utils.check_git_hash(hps.s2_ckpt_dir) | |
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval")) | |
dist.init_process_group( | |
backend = "gloo" if os.name == "nt" or torch.backends.mps.is_available() else "nccl", | |
init_method="env://", | |
world_size=n_gpus, | |
rank=rank, | |
) | |
torch.manual_seed(hps.train.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.set_device(rank) | |
train_dataset = TextAudioSpeakerLoader(hps.data) ######## | |
train_sampler = DistributedBucketSampler( | |
train_dataset, | |
hps.train.batch_size, | |
[ | |
32, | |
300, | |
400, | |
500, | |
600, | |
700, | |
800, | |
900, | |
1000, | |
1100, | |
1200, | |
1300, | |
1400, | |
1500, | |
1600, | |
1700, | |
1800, | |
1900, | |
], | |
num_replicas=n_gpus, | |
rank=rank, | |
shuffle=True, | |
) | |
collate_fn = TextAudioSpeakerCollate() | |
train_loader = DataLoader( | |
train_dataset, | |
num_workers=6, | |
shuffle=False, | |
pin_memory=True, | |
collate_fn=collate_fn, | |
batch_sampler=train_sampler, | |
persistent_workers=True, | |
prefetch_factor=16, | |
) | |
# if rank == 0: | |
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True) | |
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False, | |
# batch_size=1, pin_memory=True, | |
# drop_last=False, collate_fn=collate_fn) | |
net_g = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).cuda(rank) if torch.cuda.is_available() else SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to("mps") | |
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to("mps") | |
for name, param in net_g.named_parameters(): | |
if not param.requires_grad: | |
print(name, "not requires_grad") | |
te_p = list(map(id, net_g.enc_p.text_embedding.parameters())) | |
et_p = list(map(id, net_g.enc_p.encoder_text.parameters())) | |
mrte_p = list(map(id, net_g.enc_p.mrte.parameters())) | |
base_params = filter( | |
lambda p: id(p) not in te_p + et_p + mrte_p and p.requires_grad, | |
net_g.parameters(), | |
) | |
# te_p=net_g.enc_p.text_embedding.parameters() | |
# et_p=net_g.enc_p.encoder_text.parameters() | |
# mrte_p=net_g.enc_p.mrte.parameters() | |
optim_g = torch.optim.AdamW( | |
# filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致 | |
[ | |
{"params": base_params, "lr": hps.train.learning_rate}, | |
{ | |
"params": net_g.enc_p.text_embedding.parameters(), | |
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, | |
}, | |
{ | |
"params": net_g.enc_p.encoder_text.parameters(), | |
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, | |
}, | |
{ | |
"params": net_g.enc_p.mrte.parameters(), | |
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, | |
}, | |
], | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
optim_d = torch.optim.AdamW( | |
net_d.parameters(), | |
hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
if torch.cuda.is_available(): | |
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) | |
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True) | |
else: | |
net_g = net_g.to("mps") | |
net_d = net_d.to("mps") | |
try: # 如果能加载自动resume | |
_, _, _, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "D_*.pth"), | |
net_d, | |
optim_d, | |
) # D多半加载没事 | |
if rank == 0: | |
logger.info("loaded D") | |
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0) | |
_, _, _, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "G_*.pth"), | |
net_g, | |
optim_g, | |
) | |
global_step = (epoch_str - 1) * len(train_loader) | |
# epoch_str = 1 | |
# global_step = 0 | |
except: # 如果首次不能加载,加载pretrain | |
# traceback.print_exc() | |
epoch_str = 1 | |
global_step = 0 | |
if hps.train.pretrained_s2G != "": | |
if rank == 0: | |
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G) | |
print( | |
net_g.module.load_state_dict( | |
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"], | |
strict=False, | |
) if torch.cuda.is_available() else net_g.load_state_dict( | |
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"], | |
strict=False, | |
) | |
) ##测试不加载优化器 | |
if hps.train.pretrained_s2D != "": | |
if rank == 0: | |
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D) | |
print( | |
net_d.module.load_state_dict( | |
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"] | |
) if torch.cuda.is_available() else net_d.load_state_dict( | |
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"] | |
) | |
) | |
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) | |
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
optim_g, gamma=hps.train.lr_decay, last_epoch=-1 | |
) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
optim_d, gamma=hps.train.lr_decay, last_epoch=-1 | |
) | |
for _ in range(epoch_str): | |
scheduler_g.step() | |
scheduler_d.step() | |
scaler = GradScaler(enabled=hps.train.fp16_run) | |
for epoch in range(epoch_str, hps.train.epochs + 1): | |
if rank == 0: | |
train_and_evaluate( | |
rank, | |
epoch, | |
hps, | |
[net_g, net_d], | |
[optim_g, optim_d], | |
[scheduler_g, scheduler_d], | |
scaler, | |
# [train_loader, eval_loader], logger, [writer, writer_eval]) | |
[train_loader, None], | |
logger, | |
[writer, writer_eval], | |
) | |
else: | |
train_and_evaluate( | |
rank, | |
epoch, | |
hps, | |
[net_g, net_d], | |
[optim_g, optim_d], | |
[scheduler_g, scheduler_d], | |
scaler, | |
[train_loader, None], | |
None, | |
None, | |
) | |
scheduler_g.step() | |
scheduler_d.step() | |
def train_and_evaluate( | |
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers | |
): | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
# scheduler_g, scheduler_d = schedulers | |
train_loader, eval_loader = loaders | |
if writers is not None: | |
writer, writer_eval = writers | |
train_loader.batch_sampler.set_epoch(epoch) | |
global global_step | |
net_g.train() | |
net_d.train() | |
for batch_idx, ( | |
ssl, | |
ssl_lengths, | |
spec, | |
spec_lengths, | |
y, | |
y_lengths, | |
text, | |
text_lengths, | |
) in tqdm(enumerate(train_loader)): | |
if torch.cuda.is_available(): | |
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda( | |
rank, non_blocking=True | |
) | |
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( | |
rank, non_blocking=True | |
) | |
ssl = ssl.cuda(rank, non_blocking=True) | |
ssl.requires_grad = False | |
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True) | |
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda( | |
rank, non_blocking=True | |
) | |
else: | |
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps") | |
y, y_lengths = y.to("mps"), y_lengths.to("mps") | |
ssl = ssl.to("mps") | |
ssl.requires_grad = False | |
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True) | |
text, text_lengths = text.to("mps"), text_lengths.to("mps") | |
with autocast(enabled=hps.train.fp16_run): | |
( | |
y_hat, | |
kl_ssl, | |
ids_slice, | |
x_mask, | |
z_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
stats_ssl, | |
) = net_g(ssl, spec, spec_lengths, text, text_lengths) | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y_mel = commons.slice_segments( | |
mel, ids_slice, hps.train.segment_size // hps.data.hop_length | |
) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y = commons.slice_segments( | |
y, ids_slice * hps.data.hop_length, hps.train.segment_size | |
) # slice | |
# Discriminator | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) | |
with autocast(enabled=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( | |
y_d_hat_r, y_d_hat_g | |
) | |
loss_disc_all = loss_disc | |
optim_d.zero_grad() | |
scaler.scale(loss_disc_all).backward() | |
scaler.unscale_(optim_d) | |
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) | |
scaler.step(optim_d) | |
with autocast(enabled=hps.train.fp16_run): | |
# Generator | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) | |
with autocast(enabled=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel | |
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
if rank == 0: | |
if global_step % hps.train.log_interval == 0: | |
lr = optim_g.param_groups[0]["lr"] | |
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl] | |
logger.info( | |
"Train Epoch: {} [{:.0f}%]".format( | |
epoch, 100.0 * batch_idx / len(train_loader) | |
) | |
) | |
logger.info([x.item() for x in losses] + [global_step, lr]) | |
scalar_dict = { | |
"loss/g/total": loss_gen_all, | |
"loss/d/total": loss_disc_all, | |
"learning_rate": lr, | |
"grad_norm_d": grad_norm_d, | |
"grad_norm_g": grad_norm_g, | |
} | |
scalar_dict.update( | |
{ | |
"loss/g/fm": loss_fm, | |
"loss/g/mel": loss_mel, | |
"loss/g/kl_ssl": kl_ssl, | |
"loss/g/kl": loss_kl, | |
} | |
) | |
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) | |
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) | |
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) | |
image_dict = { | |
"slice/mel_org": utils.plot_spectrogram_to_numpy( | |
y_mel[0].data.cpu().numpy() | |
), | |
"slice/mel_gen": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].data.cpu().numpy() | |
), | |
"all/mel": utils.plot_spectrogram_to_numpy( | |
mel[0].data.cpu().numpy() | |
), | |
"all/stats_ssl": utils.plot_spectrogram_to_numpy( | |
stats_ssl[0].data.cpu().numpy() | |
), | |
} | |
utils.summarize( | |
writer=writer, | |
global_step=global_step, | |
images=image_dict, | |
scalars=scalar_dict, | |
) | |
global_step += 1 | |
if epoch % hps.train.save_every_epoch == 0 and rank == 0: | |
if hps.train.if_save_latest == 0: | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join( | |
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(global_step) | |
), | |
) | |
utils.save_checkpoint( | |
net_d, | |
optim_d, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join( | |
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(global_step) | |
), | |
) | |
else: | |
utils.save_checkpoint( | |
net_g, | |
optim_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join( | |
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(233333333333) | |
), | |
) | |
utils.save_checkpoint( | |
net_d, | |
optim_d, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join( | |
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(233333333333) | |
), | |
) | |
if rank == 0 and hps.train.if_save_every_weights == True: | |
if hasattr(net_g, "module"): | |
ckpt = net_g.module.state_dict() | |
else: | |
ckpt = net_g.state_dict() | |
logger.info( | |
"saving ckpt %s_e%s:%s" | |
% ( | |
hps.name, | |
epoch, | |
savee( | |
ckpt, | |
hps.name + "_e%s_s%s" % (epoch, global_step), | |
epoch, | |
global_step, | |
hps, | |
), | |
) | |
) | |
if rank == 0: | |
logger.info("====> Epoch: {}".format(epoch)) | |
def evaluate(hps, generator, eval_loader, writer_eval): | |
generator.eval() | |
image_dict = {} | |
audio_dict = {} | |
print("Evaluating ...") | |
with torch.no_grad(): | |
for batch_idx, ( | |
ssl, | |
ssl_lengths, | |
spec, | |
spec_lengths, | |
y, | |
y_lengths, | |
text, | |
text_lengths, | |
) in enumerate(eval_loader): | |
print(111) | |
if torch.cuda.is_available(): | |
spec, spec_lengths = spec.cuda(), spec_lengths.cuda() | |
y, y_lengths = y.cuda(), y_lengths.cuda() | |
ssl = ssl.cuda() | |
text, text_lengths = text.cuda(), text_lengths.cuda() | |
else: | |
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps") | |
y, y_lengths = y.to("mps"), y_lengths.to("mps") | |
ssl = ssl.to("mps") | |
text, text_lengths = text.to("mps"), text_lengths.to("mps") | |
for test in [0, 1]: | |
y_hat, mask, *_ = generator.module.infer( | |
ssl, spec, spec_lengths, text, text_lengths, test=test | |
) if torch.cuda.is_available() else generator.infer( | |
ssl, spec, spec_lengths, text, text_lengths, test=test | |
) | |
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1).float(), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax, | |
) | |
image_dict.update( | |
{ | |
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy( | |
y_hat_mel[0].cpu().numpy() | |
) | |
} | |
) | |
audio_dict.update( | |
{f"gen/audio_{batch_idx}_{test}": y_hat[0, :, : y_hat_lengths[0]]} | |
) | |
image_dict.update( | |
{ | |
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( | |
mel[0].cpu().numpy() | |
) | |
} | |
) | |
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]}) | |
# y_hat, mask, *_ = generator.module.infer(ssl, spec_lengths, speakers, y=None) | |
# audio_dict.update({ | |
# f"gen/audio_{batch_idx}_style_pred": y_hat[0, :, :] | |
# }) | |
utils.summarize( | |
writer=writer_eval, | |
global_step=global_step, | |
images=image_dict, | |
audios=audio_dict, | |
audio_sampling_rate=hps.data.sampling_rate, | |
) | |
generator.train() | |
if __name__ == "__main__": | |
main() | |