Update app.py
Browse files
app.py
CHANGED
|
@@ -18,55 +18,79 @@ from langchain_core.chat_history import BaseChatMessageHistory
|
|
| 18 |
from langchain.memory import ConversationBufferMemory
|
| 19 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 20 |
|
| 21 |
-
@st.cache_resource
|
| 22 |
-
def get_llm_chain():
|
| 23 |
-
return custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory)
|
| 24 |
|
| 25 |
-
if 'memory' not in st.session_state:
|
| 26 |
-
st.session_state['memory'] = ConversationBufferMemory(return_messages=True)
|
| 27 |
-
st.session_state.memory.chat_memory.add_ai_message("Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?")
|
| 28 |
|
| 29 |
-
if 'chain' not in st.session_state:
|
| 30 |
-
# st.session_state['chain'] = custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory)
|
| 31 |
-
st.session_state['chain'] = get_llm_chain()
|
| 32 |
-
# st.session_state['chain'] = custom_chain_with_history(llm=InferenceClient("https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", headers = {"Authorization": f"Bearer {API_TOKEN}"}, stream=True, max_new_tokens=512, temperature=0.01), memory=st.session_state.memory)
|
| 33 |
st.title("LMD Chatbot Tiket Ebesha Management")
|
| 34 |
st.subheader("Monthly Ticket Sample")
|
| 35 |
|
| 36 |
-
# Initialize chat history
|
| 37 |
-
if "messages" not in st.session_state:
|
| 38 |
-
st.session_state.messages = [{"role":"assistant", "content":"Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?"}]
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
# React to user input
|
| 46 |
-
if prompt := st.chat_input("Ask me anything.."):
|
| 47 |
-
# Display user message in chat message container
|
| 48 |
-
st.chat_message("User").markdown(prompt)
|
| 49 |
-
# Add user message to chat history
|
| 50 |
-
st.session_state.messages.append({"role": "User", "content": prompt})
|
| 51 |
-
|
| 52 |
-
# full_response = st.session_state.chain.invoke(prompt).split("\n<|")[0]
|
| 53 |
-
full_response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory}).split("\n<|")[0]
|
| 54 |
-
|
| 55 |
|
| 56 |
-
with st.chat_message("assistant"):
|
| 57 |
-
st.markdown(full_response)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
st.session_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
from langchain.memory import ConversationBufferMemory
|
| 19 |
from langchain_core.runnables.history import RunnableWithMessageHistory
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
st.title("LMD Chatbot Tiket Ebesha Management")
|
| 24 |
st.subheader("Monthly Ticket Sample")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
uploaded_files = st.file_uploader("Choose CSV or XLSX files", accept_multiple_files=True, type=["csv", "xlsx"])
|
| 28 |
+
df_temp = []
|
| 29 |
+
for uploaded_file in uploaded_files:
|
| 30 |
+
if uploaded_file.name.split(".")[-1] != 'csv':
|
| 31 |
+
a = pd.read_excel(uploaded_file)
|
| 32 |
+
uploaded_file = uploaded_file.name.split(".")[0]+".csv"
|
| 33 |
+
a.to_csv(uploaded_file, encoding="utf8", header=True, index=False)
|
| 34 |
+
|
| 35 |
+
df_temp.append(pd.read_csv(uploaded_file))
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
if uploaded_file:
|
| 40 |
+
|
| 41 |
+
if "df" not in st.session_state:
|
| 42 |
+
st.session_state.df = pd.concat(df_temp)
|
| 43 |
+
|
| 44 |
+
@st.cache_resource
|
| 45 |
+
def get_llm_chain():
|
| 46 |
+
return custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory, dataframe=st.session_state.df)
|
| 47 |
+
|
| 48 |
+
if 'memory' not in st.session_state:
|
| 49 |
+
st.session_state['memory'] = ConversationBufferMemory(return_messages=True)
|
| 50 |
+
st.session_state.memory.chat_memory.add_ai_message("Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?")
|
| 51 |
+
|
| 52 |
+
if 'chain' not in st.session_state:
|
| 53 |
+
# st.session_state['chain'] = custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory)
|
| 54 |
+
st.session_state['chain'] = get_llm_chain()
|
| 55 |
+
# st.session_state['chain'] = custom_chain_with_history(llm=InferenceClient("https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", headers = {"Authorization": f"Bearer {API_TOKEN}"}, stream=True, max_new_tokens=512, temperature=0.01), memory=st.session_state.memory)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Initialize chat history
|
| 59 |
+
if "messages" not in st.session_state:
|
| 60 |
+
st.session_state.messages = [{"role":"assistant", "content":"Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?"}]
|
| 61 |
+
|
| 62 |
+
# Display chat messages from history on app rerun
|
| 63 |
+
for message in st.session_state.messages:
|
| 64 |
+
with st.chat_message(message["role"]):
|
| 65 |
+
st.markdown(message["content"])
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# React to user input
|
| 70 |
+
if prompt := st.chat_input("Ask me anything.."):
|
| 71 |
+
# Display user message in chat message container
|
| 72 |
+
st.chat_message("User").markdown(prompt)
|
| 73 |
+
# Add user message to chat history
|
| 74 |
+
st.session_state.messages.append({"role": "User", "content": prompt})
|
| 75 |
+
|
| 76 |
+
# full_response = st.session_state.chain.invoke(prompt).split("\n<|")[0]
|
| 77 |
+
full_response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory}).split("\n<|")[0]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
with st.chat_message("assistant"):
|
| 81 |
+
st.markdown(full_response)
|
| 82 |
+
|
| 83 |
+
# Display assistant response in chat message container
|
| 84 |
+
# with st.chat_message("assistant"):
|
| 85 |
+
# message_placeholder = st.empty()
|
| 86 |
+
# full_response = ""
|
| 87 |
+
# for chunk in st.session_state.chain.stream(prompt):
|
| 88 |
+
# full_response += chunk + " "
|
| 89 |
+
# message_placeholder.markdown(full_response + " ")
|
| 90 |
+
# if full_response[-4:] == "\n<|":
|
| 91 |
+
# break
|
| 92 |
+
# st.markdown(full_response)
|
| 93 |
+
st.session_state.memory.save_context({"question":prompt}, {"output":full_response})
|
| 94 |
+
st.session_state.memory.chat_memory.messages = st.session_state.memory.chat_memory.messages[-15:]
|
| 95 |
+
# Add assistant response to chat history
|
| 96 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|