Spaces:
Sleeping
Sleeping
import streamlit as st | |
# from langchain_community.llms import HuggingFaceTextGenInference | |
import os, pickle | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.schema import StrOutputParser | |
from custom_llm import CustomLLM, custom_chain_with_history, custom_combined_chain, custom_dataframe_chain, format_df,custom_unique_df_chain | |
API_TOKEN = os.getenv('HF_INFER_API') | |
from typing import Optional | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_community.chat_models import ChatAnthropic | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain.memory import ConversationBufferMemory | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
def get_df(): | |
return pickle.load(open("ebesha_ticket_df.pkl", "rb")) | |
def get_llm_chain(): | |
llm = CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]) | |
dataframe_chain = custom_dataframe_chain(llm=llm, df=st.session_state.df, unique_values=st.session_state.unique_values) | |
memory_chain = custom_chain_with_history(llm=llm, memory=st.session_state.memory) | |
return custom_unique_df_chain(llm=llm, dataframe_chain=dataframe_chain, memory_chain=memory_chain) | |
if 'memory' not in st.session_state: | |
st.session_state['memory'] = ConversationBufferMemory(return_messages=True) | |
st.session_state.memory.chat_memory.add_ai_message("Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?") | |
if 'df' not in st.session_state: | |
st.session_state['df'] = get_df() | |
if 'unique_values' not in st.session_state: | |
# exec(custom_unique_df_chain(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), df=st.session_state.df).invoke({"df_example":format_df(st.session_state.df.head(4))})) | |
# st.session_state.unique_values = response | |
df = st.session_state.df | |
st.session_state.unique_values = { | |
'request_mode': df['request_mode'].unique().tolist(), | |
'requester': df['requester'].unique().tolist(), | |
'service_category': df['service_category'].unique().tolist(), | |
'child_service_1': df['child_service_1'].unique().tolist(), | |
'child_service_2': df['child_service_2'].unique().tolist(), | |
'child_service_3': df['child_service_3'].unique().tolist(), | |
'child_service_4': df['child_service_4'].unique().tolist(), | |
'request_status': df['request_status'].unique().tolist(), | |
'request_type': df['request_type'].unique().tolist(), | |
'customer_name': df['customer_name'].unique().tolist(), | |
'created_by': df['created_by'].unique().tolist(), | |
'technician': df['technician'].unique().tolist(), | |
'priority': df['priority'].unique().tolist(), | |
'fcr': df['fcr'].unique().tolist(), | |
'response_time': df['response_time'].unique().tolist() | |
} | |
if 'chain' not in st.session_state: | |
# st.session_state['chain'] = custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory) | |
st.session_state['chain'] = get_llm_chain() | |
# st.session_state['chain'] = custom_chain_with_history(llm=InferenceClient("https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", headers = {"Authorization": f"Bearer {API_TOKEN}"}, stream=True, max_new_tokens=512, temperature=0.01), memory=st.session_state.memory) | |
st.title("LMD Chatbot V3") | |
st.subheader("Combination of Ticket Submission and WI/User Guide Knowledge") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role":"assistant", "content":"Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?"}] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("Ask me anything.."): | |
# Display user message in chat message container | |
st.chat_message("User").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "User", "content": prompt}) | |
# full_response = st.session_state.chain.invoke(prompt).split("\n<|")[0] | |
full_response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory, "df_example":format_df(st.session_state.df.head(4))}).split("\n<|")[0] | |
print(len(full_response)) | |
try : | |
exec(full_response) | |
full_response = "Here is the python code: \n\n```python"+ full_response +"\n```\n\nGenerated Response: \n\n"+ str(response) | |
except: | |
pass | |
with st.chat_message("assistant"): | |
st.markdown(full_response) | |
# Display assistant response in chat message container | |
# with st.chat_message("assistant"): | |
# message_placeholder = st.empty() | |
# full_response = "" | |
# for chunk in st.session_state.chain.stream(prompt): | |
# full_response += chunk + " " | |
# message_placeholder.markdown(full_response + " ") | |
# if full_response[-4:] == "\n<|": | |
# break | |
# st.markdown(full_response) | |
st.session_state.memory.save_context({"question":prompt}, {"output":full_response}) | |
st.session_state.memory.chat_memory.messages = st.session_state.memory.chat_memory.messages[-15:] | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) |