linsan01 commited on
Commit
a22476e
·
verified ·
1 Parent(s): f1a2ed2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -1,43 +1,43 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- import numpy as np
4
- from PIL import Image
5
-
6
- model_path = "p_inference_fruits/Xeption_fruits.keras"
7
- model = tf.keras.models.load_model(model_path)
8
-
9
- # Define the core prediction function
10
- def predict_fruit(image):
11
- # Preprocess image
12
- print(type(image))
13
- image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
14
- image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
15
- image = np.array(image)
16
- image = np.expand_dims(image, axis=0) # same as image[None, ...]
17
-
18
- # Predict
19
- prediction = model.predict(image)
20
-
21
- # No need to apply sigmoid, as the output layer already uses softmax
22
- # Convert the probabilities to rounded values
23
- prediction = np.round(prediction, 3)
24
-
25
- # Separate the probabilities for each class
26
- p_apple = prediction[0][0] # Probability for class 'articuno'
27
- p_banana = prediction[0][1] # Probability for class 'moltres'
28
- p_pinenapple = prediction[0][2] # Probability for class 'zapdos'
29
- p_strawberries = prediction[0][3]
30
- p_watermelon = prediction[0][4]
31
-
32
- return {'apple': p_apple, 'banana': p_banana, 'pinenapple': p_pinenapple, 'strawberries': p_strawberries, 'watermelon': p_watermelon}
33
-
34
- # Create the Gradio interface
35
- input_image = gr.Image()
36
- iface = gr.Interface(
37
- fn=predict_fruit,
38
- inputs=input_image,
39
- outputs=gr.Label(),
40
- examples=["p_inference_fruits/images/ap1.jpeg", "p_inference_fruits/images/ap2.jpeg", "p_inference_fruits/images/ap3.jpeg", "p_inference_fruits/images/ba1.jpeg", "p_inference_fruits/images/ba2.jpeg", "p_inference_fruits/images/ba3.jpeg", "p_inference_fruits/images/pi1.jpeg","p_inference_fruits/images/pi2.jpeg","p_inference_fruits/images/pi3.jpeg","p_inference_fruits/images/st1.jpeg", "p_inference_fruits/images/st2.jpeg", "p_inference_fruits/images/st3.jpeg","p_inference_fruits/images/wa1.jpeg","p_inference_fruits/images/wa2.jpeg","p_inference_fruits/images/wa3.jpeg"],
41
- description="TEST.")
42
-
43
  iface.launch()
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ model_path = "Xeption_fruits.keras"
7
+ model = tf.keras.models.load_model(model_path)
8
+
9
+ # Define the core prediction function
10
+ def predict_fruit(image):
11
+ # Preprocess image
12
+ print(type(image))
13
+ image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
14
+ image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
15
+ image = np.array(image)
16
+ image = np.expand_dims(image, axis=0) # same as image[None, ...]
17
+
18
+ # Predict
19
+ prediction = model.predict(image)
20
+
21
+ # No need to apply sigmoid, as the output layer already uses softmax
22
+ # Convert the probabilities to rounded values
23
+ prediction = np.round(prediction, 3)
24
+
25
+ # Separate the probabilities for each class
26
+ p_apple = prediction[0][0] # Probability for class 'articuno'
27
+ p_banana = prediction[0][1] # Probability for class 'moltres'
28
+ p_pinenapple = prediction[0][2] # Probability for class 'zapdos'
29
+ p_strawberries = prediction[0][3]
30
+ p_watermelon = prediction[0][4]
31
+
32
+ return {'apple': p_apple, 'banana': p_banana, 'pinenapple': p_pinenapple, 'strawberries': p_strawberries, 'watermelon': p_watermelon}
33
+
34
+ # Create the Gradio interface
35
+ input_image = gr.Image()
36
+ iface = gr.Interface(
37
+ fn=predict_fruit,
38
+ inputs=input_image,
39
+ outputs=gr.Label(),
40
+ examples=["images/ap1.jpeg", "images/ap2.jpeg", "images/ap3.jpeg", "images/ba1.jpeg", "images/ba2.jpeg", "images/ba3.jpeg", "images/pi1.jpeg","images/pi2.jpeg","images/pi3.jpeg","images/st1.jpeg", "images/st2.jpeg", "images/st3.jpeg","images/wa1.jpeg","images/wa2.jpeg","images/wa3.jpeg"],
41
+ description="TEST.")
42
+
43
  iface.launch()