|
import gradio as gr |
|
import tensorflow as tf |
|
import numpy as np |
|
from PIL import Image |
|
|
|
model_path = "Xeption_fruits.keras" |
|
model = tf.keras.models.load_model(model_path) |
|
|
|
|
|
def predict_fruit(image): |
|
|
|
print(type(image)) |
|
image = Image.fromarray(image.astype('uint8')) |
|
image = image.resize((150, 150)) |
|
image = np.array(image) |
|
image = np.expand_dims(image, axis=0) |
|
|
|
|
|
prediction = model.predict(image) |
|
|
|
|
|
|
|
prediction = np.round(prediction, 3) |
|
|
|
|
|
p_apple = prediction[0][0] |
|
p_banana = prediction[0][1] |
|
p_pinenapple = prediction[0][2] |
|
p_strawberries = prediction[0][3] |
|
p_watermelon = prediction[0][4] |
|
|
|
return {'apple': p_apple, 'banana': p_banana, 'pinenapple': p_pinenapple, 'strawberries': p_strawberries, 'watermelon': p_watermelon} |
|
|
|
|
|
input_image = gr.Image() |
|
iface = gr.Interface( |
|
fn=predict_fruit, |
|
inputs=input_image, |
|
outputs=gr.Label(), |
|
examples=["images/ap1.jpeg", "images/ap2.jpeg", "images/ap3.jpeg", "images/ba1.jpeg", "images/ba2.jpeg", "images/ba3.jpeg", "images/pi1.jpeg","images/pi2.jpeg","images/pi3.jpeg","images/st1.jpeg", "images/st2.jpeg", "images/st3.jpeg","images/wa1.jpeg","images/wa2.jpeg","images/wa3.jpeg"], |
|
description="FruitFinder") |
|
|
|
iface.launch() |