Linoy Tsaban
Update app.py
c37a174
raw
history blame
9.62 kB
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps)
return wt, zs, wts
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
# sd_model_id = "runwayml/stable-diffusion-v1-5"
# sd_model_id = "CompVis/stable-diffusion-v1-4"
sd_model_id = "stabilityai/stable-diffusion-2-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
def get_example():
case = [
[
'Examples/gnochi_mirror.jpeg',
'',
'watercolor painting of a cat sitting next to a mirror',
100,
3.5,
36,
15,
'Examples/gnochi_mirror_reconstrcution.png',
'Examples/gnochi_mirror_watercolor_painting.png',
],]
return case
def edit(input_image,
src_prompt ="",
tar_prompt="",
steps=100,
cfg_scale_src = 3.5,
cfg_scale_tar = 15,
skip=36,
seed = 0,
left = 0,
right = 0,
top = 0,
bottom = 0
):
torch.manual_seed(seed)
# offsets=(0,0,0,0)
x0 = load_512(input_image, left,right, top, bottom, device)
# invert and retrieve noise maps and latent
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
# #
# xT=wts[skip]
# etas=1.0
# prompts=[tar_prompt]
# cfg_scales=[cfg_scale_tar]
# prog_bar=False
# zs=zs[skip:]
# batch_size = len(prompts)
# cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(sd_pipe.device)
# text_embeddings = encode_text(sd_pipe, prompts)
# uncond_embedding = encode_text(sd_pipe, [""] * batch_size)
# if etas is None: etas = 0
# if type(etas) in [int, float]: etas = [etas]*sd_pipe.scheduler.num_inference_steps
# assert len(etas) == sd_pipe.scheduler.num_inference_steps
# timesteps = sd_pipe.scheduler.timesteps.to(sd_pipe.device)
# xt = xT.expand(batch_size, -1, -1, -1)
# op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
# t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
# for t in op:
# idx = t_to_idx[int(t)]
# ## Unconditional embedding
# with torch.no_grad():
# uncond_out = sd_pipe.unet.forward(xt, timestep = t,
# encoder_hidden_states = uncond_embedding)
# ## Conditional embedding
# if prompts:
# with torch.no_grad():
# cond_out = sd_pipe.unet.forward(xt, timestep = t,
# encoder_hidden_states = text_embeddings)
# z = zs[idx] if not zs is None else None
# z = z.expand(batch_size, -1, -1, -1)
# if prompts:
# ## classifier free guidance
# noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
# else:
# noise_pred = uncond_out.sample
# # 2. compute less noisy image and set x_t -> x_t-1
# xt = reverse_step(sd_pipe, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
# # interm denoised img
# with autocast("cuda"), inference_mode():
# x0_dec = sd_pipe.vae.decode(1 / 0.18215 * xt).sample
# if x0_dec.dim()<4:
# x0_dec = x0_dec[None,:,:,:]
# interm_img = image_grid(x0_dec)
# yield interm_img
# yield interm_img
output = sample(wt, zs, wts, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar, skip=skip)
return output
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM Inversion
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks() as demo:
gr.HTML(intro)
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
input_image.style(height=512, width=512)
# inverted_image = gr.Image(label=f"Reconstructed Image", interactive=False)
# inverted_image.style(height=512, width=512)
output_image = gr.Image(label=f"Edited Image", interactive=False)
output_image.style(height=512, width=512)
with gr.Row():
# with gr.Column(scale=1, min_width=100):
# invert_button = gr.Button("Invert")
# with gr.Column(scale=1, min_width=100):
# edit_button = gr.Button("Edit")
with gr.Column(scale=1, min_width=100):
edit_button = gr.Button("Run")
with gr.Row():
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="optional: describe the target image")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="optional: describe the original image")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True)
# reconstruction
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
#shift
with gr.Column():
left = gr.Number(value=0, precision=0, label="Left Shift", interactive=True)
right = gr.Number(value=0, precision=0, label="Right Shift", interactive=True)
top = gr.Number(value=0, precision=0, label="Top Shift", interactive=True)
bottom = gr.Number(value=0, precision=0, label="Bottom Shift", interactive=True)
# gr.Markdown(help_text)
# invert_button.click(
# fn=edit,
# inputs=[input_image,
# src_prompt,
# src_prompt,
# steps,
# cfg_scale_src,
# cfg_scale_tar,
# skip,
# seed,
# left,
# right,
# top,
# bottom
# ],
# outputs = [inverted_image],
# )
edit_button.click(
fn=edit,
inputs=[input_image,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
skip,
seed,
left,
right,
top,
bottom
],
outputs=[output_image],
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
cfg_scale_tar,
skip,
cfg_scale_tar,
output_image
],
outputs=[output_image ],
# fn=edit,
# cache_examples=True
)
demo.queue()
demo.launch(share=False)