Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import spaces | |
import random | |
from diffusers import AutoPipelineForText2Image | |
from PIL import Image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe = AutoPipelineForText2Image.from_pretrained( | |
"ostris/Flex.2-preview", | |
custom_pipeline="pipeline.py", | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
# def calculate_optimal_dimensions(image: Image.Image): | |
# # Extract the original dimensions | |
# original_width, original_height = image.size | |
# # Set constants | |
# MIN_ASPECT_RATIO = 9 / 16 | |
# MAX_ASPECT_RATIO = 16 / 9 | |
# FIXED_DIMENSION = 1024 | |
# # Calculate the aspect ratio of the original image | |
# original_aspect_ratio = original_width / original_height | |
# # Determine which dimension to fix | |
# if original_aspect_ratio > 1: # Wider than tall | |
# width = FIXED_DIMENSION | |
# height = round(FIXED_DIMENSION / original_aspect_ratio) | |
# else: # Taller than wide | |
# height = FIXED_DIMENSION | |
# width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# # Ensure dimensions are multiples of 8 | |
# width = (width // 8) * 8 | |
# height = (height // 8) * 8 | |
# # Enforce aspect ratio limits | |
# calculated_aspect_ratio = width / height | |
# if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
# width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
# height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# # Ensure width and height remain above the minimum dimensions | |
# width = max(width, 576) if width == FIXED_DIMENSION else width | |
# height = max(height, 576) if height == FIXED_DIMENSION else height | |
# return width, height | |
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5,control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): | |
image = edit_images["background"].convert("RGB") | |
# width, height = calculate_optimal_dimensions(image) | |
mask = edit_images["layers"][0].convert("RGB") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
out_image = pipe( | |
prompt=prompt, | |
inpaint_image=image, | |
inpaint_mask=mask, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
control_strength=control_strength, | |
control_stop=control_stop, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator("cpu").manual_seed(seed) | |
).images[0] | |
return (image, out_image), seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# Flex.2 Preview - Inpaint | |
Inpainting demo for Flex.2 Preview - Open Source 8B parameter Text to Image Diffusion Model with universal control and built-in inpainting support | |
trained and devloped by [ostris](https://huggingface.co/ostris) | |
[[apache-2.0 license](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)] [[model](https://huggingface.co/ostris/Flex.2-preview)] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label='Upload and draw mask for inpainting', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), | |
height=600 | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run") | |
result = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB') | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
height = gr.Slider(64, 2048, value=512, step=64, label="Height") | |
width = gr.Slider(64, 2048, value=512, step=64, label="Width") | |
with gr.Row(): | |
guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale") | |
control_strength = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Control Strength") | |
control_stop = gr.Slider(0.0, 1.0, value=0.33, step=0.05, label="Control Stop") | |
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps") | |
run_button.click( | |
fn = infer, | |
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, control_strength, control_stop, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |