Flex-preview / app.py
linoyts's picture
linoyts HF Staff
Update app.py
cfbaa8a verified
raw
history blame contribute delete
5.51 kB
import gradio as gr
import numpy as np
import spaces
import torch
import spaces
import random
from diffusers import AutoPipelineForText2Image
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = AutoPipelineForText2Image.from_pretrained(
"ostris/Flex.2-preview",
custom_pipeline="pipeline.py",
torch_dtype=torch.bfloat16,
).to("cuda")
# def calculate_optimal_dimensions(image: Image.Image):
# # Extract the original dimensions
# original_width, original_height = image.size
# # Set constants
# MIN_ASPECT_RATIO = 9 / 16
# MAX_ASPECT_RATIO = 16 / 9
# FIXED_DIMENSION = 1024
# # Calculate the aspect ratio of the original image
# original_aspect_ratio = original_width / original_height
# # Determine which dimension to fix
# if original_aspect_ratio > 1: # Wider than tall
# width = FIXED_DIMENSION
# height = round(FIXED_DIMENSION / original_aspect_ratio)
# else: # Taller than wide
# height = FIXED_DIMENSION
# width = round(FIXED_DIMENSION * original_aspect_ratio)
# # Ensure dimensions are multiples of 8
# width = (width // 8) * 8
# height = (height // 8) * 8
# # Enforce aspect ratio limits
# calculated_aspect_ratio = width / height
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
# width = (height * MAX_ASPECT_RATIO // 8) * 8
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
# height = (width / MIN_ASPECT_RATIO // 8) * 8
# # Ensure width and height remain above the minimum dimensions
# width = max(width, 576) if width == FIXED_DIMENSION else width
# height = max(height, 576) if height == FIXED_DIMENSION else height
# return width, height
@spaces.GPU
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5,control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
image = edit_images["background"].convert("RGB")
# width, height = calculate_optimal_dimensions(image)
mask = edit_images["layers"][0].convert("RGB")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
out_image = pipe(
prompt=prompt,
inpaint_image=image,
inpaint_mask=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
control_strength=control_strength,
control_stop=control_stop,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cpu").manual_seed(seed)
).images[0]
return (image, out_image), seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Flex.2 Preview - Inpaint
Inpainting demo for Flex.2 Preview - Open Source 8B parameter Text to Image Diffusion Model with universal control and built-in inpainting support
trained and devloped by [ostris](https://huggingface.co/ostris)
[[apache-2.0 license](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)] [[model](https://huggingface.co/ostris/Flex.2-preview)]
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB')
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
height = gr.Slider(64, 2048, value=512, step=64, label="Height")
width = gr.Slider(64, 2048, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale")
control_strength = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Control Strength")
control_stop = gr.Slider(0.0, 1.0, value=0.33, step=0.05, label="Control Stop")
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
run_button.click(
fn = infer,
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, control_strength, control_stop, num_inference_steps],
outputs = [result, seed]
)
demo.launch()