|
import gradio as gr |
|
import os |
|
from openai import OpenAI |
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
openai_client = OpenAI(api_key=OPENAI_API_KEY) |
|
|
|
DEEPSEEK_API_KEY = so.getenv("DEEPSEEK_API_KEY") |
|
deepseek_client = OpenAI(api_key=DEEPSEEK_API_KEY,base_url="https://api.deepseek.com" |
|
def generate_response(prompt, model_provider, temperature, top_p, max_tokens, repetition_penalty): |
|
try: |
|
response = openai_client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "user", "content": prompt}], |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_tokens=max_tokens, |
|
presence_penalty=repetition_penalty, |
|
stream=False |
|
) |
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
return f"OpenAI API Error: {str(e)}" |
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox(label="Prompt", lines=6, placeholder="Ask something..."), |
|
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"), |
|
gr.Slider(minimum=32, maximum=2048, value=512, step=32, label="Max New Tokens"), |
|
gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty") |
|
], |
|
outputs="text", |
|
title="🧠 DeepSeek LLM Chat with Parameter Tuning", |
|
theme=gr.themes.Soft() |
|
) |
|
|
|
iface.launch() |
|
|
|
|