linhdo commited on
Commit
1be9dc9
1 Parent(s): c757589

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +98 -0
  2. models/dla-model.pt +3 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import libraries
2
+ import cv2 # for reading images, draw bounding boxes
3
+ from ultralytics import YOLO
4
+ import gradio as gr
5
+
6
+ # Define constants
7
+ ENTITIES_COLORS = {
8
+ "Caption": (191, 100, 21),
9
+ "Footnote": (2, 62, 115),
10
+ "Formula": (140, 80, 58),
11
+ "List-item": (168, 181, 69),
12
+ "Page-footer": (2, 69, 84),
13
+ "Page-header": (83, 115, 106),
14
+ "Picture": (255, 72, 88),
15
+ "Section-header": (0, 204, 192),
16
+ "Table": (116, 127, 127),
17
+ "Text": (0, 153, 221),
18
+ "Title": (196, 51, 2)
19
+ }
20
+ BOX_PADDING = 2
21
+
22
+ # Load models
23
+ DETECTION_MODEL = YOLO("models/dla-model.pt")
24
+
25
+ def detect(image_path):
26
+ """
27
+ Output inference image with bounding box
28
+
29
+ Args:
30
+ - image: to check for checkboxes
31
+
32
+ Return: image with bounding boxes drawn
33
+ """
34
+ image = cv2.imread(image_path)
35
+ if image is None:
36
+ return image
37
+
38
+ # Predict on image
39
+ results = DETECTION_MODEL.predict(source=image, conf=0.2, iou=0.8) # Predict on image
40
+ boxes = results[0].boxes # Get bounding boxes
41
+
42
+ if len(boxes) == 0:
43
+ return image
44
+
45
+ # Get bounding boxes
46
+ for box in boxes:
47
+ detection_class_conf = round(box.conf.item(), 2)
48
+ cls = list(ENTITIES_COLORS)[int(box.cls)]
49
+ # Get start and end points of the current box
50
+ start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
51
+ end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
52
+
53
+
54
+ # 01. DRAW BOUNDING BOX OF OBJECT
55
+ line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
56
+ image = cv2.rectangle(img=image,
57
+ pt1=start_box,
58
+ pt2=end_box,
59
+ color=ENTITIES_COLORS[cls],
60
+ thickness = line_thickness) # Draw the box with predefined colors
61
+
62
+ # 02. DRAW LABEL
63
+ text = cls + " " + str(detection_class_conf)
64
+ # Get text dimensions to draw wrapping box
65
+ font_thickness = max(line_thickness - 1, 1)
66
+ (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness)
67
+ # Draw wrapping box for text
68
+ image = cv2.rectangle(img=image,
69
+ pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
70
+ pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
71
+ color=ENTITIES_COLORS[cls],
72
+ thickness=-1)
73
+ # Put class name on image
74
+ start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
75
+ image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
76
+
77
+ return image
78
+
79
+ iface = gr.Interface(fn=detect,
80
+ inputs=gr.inputs.Image(label="Upload scanned document", type="filepath"),
81
+ outputs="image")
82
+ iface.launch()
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
models/dla-model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c4d16b4321bdd20c7a3d8cf4b4fac86207d92e7686d01ae86eb292c040fb0fa
3
+ size 22518254