Spaces:
Sleeping
Sleeping
lingyit1108
commited on
Commit
β’
e29216a
1
Parent(s):
be36d9d
tweak the vision_api prompt, create configuration files, minor tweak to main script
Browse files- config/model_config.yml +17 -0
- config/model_config_advanced.yml +17 -0
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/data_level0.bin +3 -0
- raw_documents/overview_background.txt β models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/header.bin +2 -2
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/length.bin +3 -0
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/link_lists.bin +0 -0
- models/chroma_db_advanced/chroma.sqlite3 +3 -0
- models/fine-tuned-embeddings-advanced/1_Pooling/config.json +3 -0
- models/fine-tuned-embeddings-advanced/README.md +3 -0
- models/fine-tuned-embeddings-advanced/config.json +3 -0
- models/fine-tuned-embeddings-advanced/config_sentence_transformers.json +3 -0
- models/fine-tuned-embeddings-advanced/eval/Information-Retrieval_evaluation_results.csv +3 -0
- models/fine-tuned-embeddings-advanced/model.safetensors +3 -0
- models/fine-tuned-embeddings-advanced/modules.json +3 -0
- models/fine-tuned-embeddings-advanced/sentence_bert_config.json +3 -0
- models/fine-tuned-embeddings-advanced/special_tokens_map.json +3 -0
- models/fine-tuned-embeddings-advanced/tokenizer.json +3 -0
- models/fine-tuned-embeddings-advanced/tokenizer_config.json +3 -0
- models/fine-tuned-embeddings-advanced/vocab.txt +3 -0
- notebooks/001_fine-tuning-embedding-model-advanced.ipynb +1470 -0
- notebooks/002_persisted-embedding-model-advanced.ipynb +507 -0
- notebooks/002_persisted-embedding-model.ipynb +20 -4
- raw_documents/answers.txt +3 -0
- raw_documents/conversation_examples.txt +3 -0
- raw_documents/qna.txt +2 -2
- requirements.txt +24 -11
- streamlit_app.py +15 -11
- vision_api.py +9 -1
config/model_config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input_data:
|
2 |
+
source:
|
3 |
+
- './raw_documents/qna.txt'
|
4 |
+
- './raw_documents/HI Chapter Summary Version 1.3.pdf'
|
5 |
+
- './raw_documents/conversation_examples.txt'
|
6 |
+
- './raw_documents/HI_Knowledge_Base.pdf'
|
7 |
+
- './raw_documents/answers.txt'
|
8 |
+
|
9 |
+
embeddings:
|
10 |
+
embedding_base_model: 'BAAI/bge-small-en-v1.5'
|
11 |
+
fine_tuned_embedding_model: 'local:models/fine-tuned-embeddings'
|
12 |
+
|
13 |
+
vector_store:
|
14 |
+
persisted_path: './models/chroma_db'
|
15 |
+
|
16 |
+
questionaire_data:
|
17 |
+
db_path: './database/mock_qna.sqlite'
|
config/model_config_advanced.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input_data:
|
2 |
+
source:
|
3 |
+
- './raw_documents/qna.txt'
|
4 |
+
- './raw_documents/HI Chapter Summary Version 1.3.pdf'
|
5 |
+
- './raw_documents/conversation_examples.txt'
|
6 |
+
- './raw_documents/HI_Knowledge_Base.pdf'
|
7 |
+
- './raw_documents/answers.txt'
|
8 |
+
|
9 |
+
embeddings:
|
10 |
+
embedding_base_model: 'BAAI/bge-small-en-v1.5'
|
11 |
+
fine_tuned_embedding_model: 'local:models/fine-tuned-embeddings-advanced'
|
12 |
+
|
13 |
+
vector_store:
|
14 |
+
persisted_path: './models/chroma_db_advanced'
|
15 |
+
|
16 |
+
questionaire_data:
|
17 |
+
db_path: './database/mock_qna_advanced.sqlite'
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eec38a208011f4f233e59d2618152fa02e42d91757412778a5db814fe80bf2f
|
3 |
+
size 1676000
|
raw_documents/overview_background.txt β models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/header.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
|
3 |
+
size 100
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
|
3 |
+
size 4000
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/link_lists.bin
ADDED
File without changes
|
models/chroma_db_advanced/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51aba6bb0bf5e5851de1e4e6cf53215b874c11b7194b3b765a2edfbc59ce9313
|
3 |
+
size 15937536
|
models/fine-tuned-embeddings-advanced/1_Pooling/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd7e0a022036d0ffa0f998824a918247d5a7473d968cdc92e318fd04098e682
|
3 |
+
size 270
|
models/fine-tuned-embeddings-advanced/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af2a3dc885fad9e063851f6d7d61c8451bd064d9be25a3086a6f4be73e3d66ec
|
3 |
+
size 2544
|
models/fine-tuned-embeddings-advanced/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d1406e6b622e1d931c5535df1578231e0b315bf77ac55d547f36faed55b99ef
|
3 |
+
size 706
|
models/fine-tuned-embeddings-advanced/config_sentence_transformers.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:940d5f50db195fa6e5e6a4f122c095f77880de259d74b14a65779ed48bdd7c56
|
3 |
+
size 124
|
models/fine-tuned-embeddings-advanced/eval/Information-Retrieval_evaluation_results.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6120b99457f04ca31972429df8bcdc01ea1f1789df3f3a7b90859440d23cdedf
|
3 |
+
size 4140
|
models/fine-tuned-embeddings-advanced/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eed74129b591608f8b74c53a800ae0035e63d623618cb64e26638124beb54f6
|
3 |
+
size 133462128
|
models/fine-tuned-embeddings-advanced/modules.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
|
3 |
+
size 349
|
models/fine-tuned-embeddings-advanced/sentence_bert_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e39fda68ccbff05bfa723ae9c0e70e23e2ec373b76e0f8c6e71af72a693cbf
|
3 |
+
size 52
|
models/fine-tuned-embeddings-advanced/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5b662e421ea9fac075174bb0688ee0d9431699900b90662acd44b2a350503a
|
3 |
+
size 695
|
models/fine-tuned-embeddings-advanced/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91f1def9b9391fdabe028cd3f3fcc4efd34e5d1f08c3bf2de513ebb5911a1854
|
3 |
+
size 711649
|
models/fine-tuned-embeddings-advanced/tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b29c7bfc889e53b36d9dd3e686dd4300f6525110eaa98c76a5dafceb2029f53
|
3 |
+
size 1242
|
models/fine-tuned-embeddings-advanced/vocab.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
3 |
+
size 231508
|
notebooks/001_fine-tuning-embedding-model-advanced.ipynb
ADDED
@@ -0,0 +1,1470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json, os\n",
|
11 |
+
"\n",
|
12 |
+
"from llama_index.core import SimpleDirectoryReader\n",
|
13 |
+
"from llama_index.core.node_parser import SentenceSplitter\n",
|
14 |
+
"from llama_index.core.schema import MetadataMode"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 2,
|
20 |
+
"id": "139da55d-f0c3-4b76-b47f-e18ee552eb30",
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"from llama_index.finetuning.embeddings.common import (\n",
|
25 |
+
" EmbeddingQAFinetuneDataset,\n",
|
26 |
+
" generate_qa_embedding_pairs,\n",
|
27 |
+
")\n",
|
28 |
+
"from llama_index.finetuning import SentenceTransformersFinetuneEngine"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"id": "1dfb1acc-606b-4106-baf7-87ed487b5d9c",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"from llama_index.embeddings.openai.base import OpenAIEmbedding"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 4,
|
44 |
+
"id": "fa06c66a-ab07-46a6-bc53-f6157017883c",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"from llama_index.core import ServiceContext, VectorStoreIndex"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 5,
|
54 |
+
"id": "c9928491-520a-441a-8c44-1fc21cfa5def",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"from llama_index.core.schema import TextNode"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 6,
|
64 |
+
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"from tqdm.notebook import tqdm\n",
|
69 |
+
"import pandas as pd"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 7,
|
75 |
+
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"from sentence_transformers.evaluation import InformationRetrievalEvaluator\n",
|
80 |
+
"from sentence_transformers import SentenceTransformer\n",
|
81 |
+
"from pathlib import Path"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 8,
|
87 |
+
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"from llama_index.llms.openai import OpenAI"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": null,
|
97 |
+
"id": "7dc65d7b-3cdb-4513-b09f-f7406ad59b35",
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [],
|
100 |
+
"source": []
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": 9,
|
105 |
+
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
106 |
+
"metadata": {},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"TRAIN_FILES = [\"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
110 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\"]\n",
|
111 |
+
"VAL_FILES = [\"../raw_documents/qna.txt\",\n",
|
112 |
+
" \"../raw_documents/conversation_examples.txt\",\n",
|
113 |
+
" \"../raw_documents/answers.txt\"]\n",
|
114 |
+
"\n",
|
115 |
+
"### based on all docs\n",
|
116 |
+
"TRAIN_CORPUS_FPATH = \"../data/train_corpus_advanced.json\"\n",
|
117 |
+
"\n",
|
118 |
+
"### based on ../raw_documents/HI Chapter Summary Version 1.3.pdf\n",
|
119 |
+
"VAL_CORPUS_FPATH = \"../data/val_corpus.json\""
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"id": "663cd20e-c16e-4dda-924e-5f60eb25a772",
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [],
|
128 |
+
"source": []
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 10,
|
133 |
+
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"def load_corpus(files, verbose=False):\n",
|
138 |
+
" if verbose:\n",
|
139 |
+
" print(f\"Loading files {files}\")\n",
|
140 |
+
"\n",
|
141 |
+
" reader = SimpleDirectoryReader(input_files=files)\n",
|
142 |
+
" docs = reader.load_data()\n",
|
143 |
+
" if verbose:\n",
|
144 |
+
" print(f\"Loaded {len(docs)} docs\")\n",
|
145 |
+
"\n",
|
146 |
+
" parser = SentenceSplitter()\n",
|
147 |
+
" nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)\n",
|
148 |
+
"\n",
|
149 |
+
" if verbose:\n",
|
150 |
+
" print(f\"Parsed {len(nodes)} nodes\")\n",
|
151 |
+
"\n",
|
152 |
+
" return nodes"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
158 |
+
"id": "a6ba52e5-4d7f-4c30-8979-8d84a1bc3ca4",
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [],
|
161 |
+
"source": []
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": 11,
|
166 |
+
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"name": "stdout",
|
171 |
+
"output_type": "stream",
|
172 |
+
"text": [
|
173 |
+
"load qa embedding training pairs from saved corpus file..\n",
|
174 |
+
"load qa embedding validation pairs from saved corpus file..\n"
|
175 |
+
]
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"source": [
|
179 |
+
"if not os.path.exists(TRAIN_CORPUS_FPATH):\n",
|
180 |
+
" train_nodes = load_corpus(TRAIN_FILES, verbose=True)\n",
|
181 |
+
" print(\"generating qa embedding pairs for training data..\")\n",
|
182 |
+
" train_dataset = generate_qa_embedding_pairs(\n",
|
183 |
+
" llm=OpenAI(model=\"gpt-3.5-turbo-1106\"), nodes=train_nodes\n",
|
184 |
+
" )\n",
|
185 |
+
" train_dataset.save_json(TRAIN_CORPUS_FPATH)\n",
|
186 |
+
"else:\n",
|
187 |
+
" print(\"load qa embedding training pairs from saved corpus file..\")\n",
|
188 |
+
" train_dataset = EmbeddingQAFinetuneDataset.from_json(TRAIN_CORPUS_FPATH)\n",
|
189 |
+
"\n",
|
190 |
+
"if not os.path.exists(VAL_CORPUS_FPATH):\n",
|
191 |
+
" val_nodes = load_corpus(VAL_FILES, verbose=True)\n",
|
192 |
+
" print(\"generating qa embedding pairs for validation data..\")\n",
|
193 |
+
" val_dataset = generate_qa_embedding_pairs(\n",
|
194 |
+
" llm=OpenAI(model=\"gpt-3.5-turbo-1106\"), nodes=val_nodes\n",
|
195 |
+
" )\n",
|
196 |
+
" val_dataset.save_json(VAL_CORPUS_FPATH)\n",
|
197 |
+
"else:\n",
|
198 |
+
" print(\"load qa embedding validation pairs from saved corpus file..\")\n",
|
199 |
+
" val_dataset = EmbeddingQAFinetuneDataset.from_json(VAL_CORPUS_FPATH)"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"id": "c3399443-5936-4dfe-b0ec-821d222e734d",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": []
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": 12,
|
213 |
+
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [
|
216 |
+
{
|
217 |
+
"data": {
|
218 |
+
"application/vnd.jupyter.widget-view+json": {
|
219 |
+
"model_id": "19241142d8534d139252ffe078559bb7",
|
220 |
+
"version_major": 2,
|
221 |
+
"version_minor": 0
|
222 |
+
},
|
223 |
+
"text/plain": [
|
224 |
+
"README.md: 0%| | 0.00/94.8k [00:00<?, ?B/s]"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
"metadata": {},
|
228 |
+
"output_type": "display_data"
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
233 |
+
" train_dataset,\n",
|
234 |
+
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
235 |
+
" model_output_path=\"../models/fine-tuned-embeddings-advanced\",\n",
|
236 |
+
" batch_size=5,\n",
|
237 |
+
" val_dataset=val_dataset\n",
|
238 |
+
")"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 13,
|
244 |
+
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
245 |
+
"metadata": {},
|
246 |
+
"outputs": [
|
247 |
+
{
|
248 |
+
"data": {
|
249 |
+
"application/vnd.jupyter.widget-view+json": {
|
250 |
+
"model_id": "2c10018eda384f49a220c4fa66738fe1",
|
251 |
+
"version_major": 2,
|
252 |
+
"version_minor": 0
|
253 |
+
},
|
254 |
+
"text/plain": [
|
255 |
+
"Epoch: 0%| | 0/2 [00:00<?, ?it/s]"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
"metadata": {},
|
259 |
+
"output_type": "display_data"
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"data": {
|
263 |
+
"application/vnd.jupyter.widget-view+json": {
|
264 |
+
"model_id": "5f4e5628b306450eab01e3af1ebdaf28",
|
265 |
+
"version_major": 2,
|
266 |
+
"version_minor": 0
|
267 |
+
},
|
268 |
+
"text/plain": [
|
269 |
+
"Iteration: 0%| | 0/268 [00:00<?, ?it/s]"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
"metadata": {},
|
273 |
+
"output_type": "display_data"
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"data": {
|
277 |
+
"application/vnd.jupyter.widget-view+json": {
|
278 |
+
"model_id": "bce2bb08b15548f8afd8fd878f2009a4",
|
279 |
+
"version_major": 2,
|
280 |
+
"version_minor": 0
|
281 |
+
},
|
282 |
+
"text/plain": [
|
283 |
+
"Iteration: 0%| | 0/268 [00:00<?, ?it/s]"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
"metadata": {},
|
287 |
+
"output_type": "display_data"
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"source": [
|
291 |
+
"finetune_engine.finetune()"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 14,
|
297 |
+
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"embed_model = finetune_engine.get_finetuned_model()"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": 15,
|
307 |
+
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
308 |
+
"metadata": {},
|
309 |
+
"outputs": [
|
310 |
+
{
|
311 |
+
"data": {
|
312 |
+
"text/plain": [
|
313 |
+
"HuggingFaceEmbedding(model_name='../models/fine-tuned-embeddings-advanced', embed_batch_size=10, callback_manager=<llama_index.core.callbacks.base.CallbackManager object at 0x29f61adf0>, tokenizer_name='../models/fine-tuned-embeddings-advanced', max_length=512, pooling=<Pooling.CLS: 'cls'>, normalize=True, query_instruction=None, text_instruction=None, cache_folder=None)"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
"execution_count": 15,
|
317 |
+
"metadata": {},
|
318 |
+
"output_type": "execute_result"
|
319 |
+
}
|
320 |
+
],
|
321 |
+
"source": [
|
322 |
+
"embed_model"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": null,
|
328 |
+
"id": "c4f4058c-edbb-43c4-bebe-8c36d410e819",
|
329 |
+
"metadata": {},
|
330 |
+
"outputs": [],
|
331 |
+
"source": []
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": 16,
|
336 |
+
"id": "97ebae28-80ef-4f35-92ce-a370776e3b22",
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"fine_tuned_embed_model = SentenceTransformer(\"../models/fine-tuned-embeddings-advanced\")"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": null,
|
346 |
+
"id": "dad7589f-4855-4432-b710-01aff9c134ee",
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [],
|
349 |
+
"source": []
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "code",
|
353 |
+
"execution_count": 17,
|
354 |
+
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
355 |
+
"metadata": {},
|
356 |
+
"outputs": [],
|
357 |
+
"source": [
|
358 |
+
"def evaluate(\n",
|
359 |
+
" dataset,\n",
|
360 |
+
" embed_model,\n",
|
361 |
+
" top_k=5,\n",
|
362 |
+
" verbose=False,\n",
|
363 |
+
"):\n",
|
364 |
+
" corpus = dataset.corpus\n",
|
365 |
+
" queries = dataset.queries\n",
|
366 |
+
" relevant_docs = dataset.relevant_docs\n",
|
367 |
+
"\n",
|
368 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n",
|
369 |
+
" nodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()]\n",
|
370 |
+
" index = VectorStoreIndex(\n",
|
371 |
+
" nodes, service_context=service_context, show_progress=True\n",
|
372 |
+
" )\n",
|
373 |
+
" retriever = index.as_retriever(similarity_top_k=top_k)\n",
|
374 |
+
"\n",
|
375 |
+
" eval_results = []\n",
|
376 |
+
" for query_id, query in tqdm(queries.items()):\n",
|
377 |
+
" retrieved_nodes = retriever.retrieve(query)\n",
|
378 |
+
" retrieved_ids = [node.node.node_id for node in retrieved_nodes]\n",
|
379 |
+
" expected_id = relevant_docs[query_id][0]\n",
|
380 |
+
" is_hit = expected_id in retrieved_ids # assume 1 relevant doc\n",
|
381 |
+
"\n",
|
382 |
+
" eval_result = {\n",
|
383 |
+
" \"is_hit\": is_hit,\n",
|
384 |
+
" \"retrieved\": retrieved_ids,\n",
|
385 |
+
" \"expected\": expected_id,\n",
|
386 |
+
" \"query\": query_id,\n",
|
387 |
+
" }\n",
|
388 |
+
" eval_results.append(eval_result)\n",
|
389 |
+
" return eval_results"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"cell_type": "code",
|
394 |
+
"execution_count": 18,
|
395 |
+
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"def evaluate_st(\n",
|
400 |
+
" dataset,\n",
|
401 |
+
" model_id,\n",
|
402 |
+
" name,\n",
|
403 |
+
"):\n",
|
404 |
+
" corpus = dataset.corpus\n",
|
405 |
+
" queries = dataset.queries\n",
|
406 |
+
" relevant_docs = dataset.relevant_docs\n",
|
407 |
+
"\n",
|
408 |
+
" evaluator = InformationRetrievalEvaluator(\n",
|
409 |
+
" queries, corpus, relevant_docs, name=name\n",
|
410 |
+
" )\n",
|
411 |
+
" model = SentenceTransformer(model_id)\n",
|
412 |
+
" output_path = \"../results/\"\n",
|
413 |
+
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
414 |
+
" return evaluator(model, output_path=output_path)"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": null,
|
420 |
+
"id": "703f9350-f7ab-43cc-abdf-055323ef67dd",
|
421 |
+
"metadata": {},
|
422 |
+
"outputs": [],
|
423 |
+
"source": []
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": null,
|
428 |
+
"id": "57d66621-49e6-4a8a-9ef2-83b2b33e33d7",
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [],
|
431 |
+
"source": []
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "markdown",
|
435 |
+
"id": "b43ad08e-e96d-412b-9a88-14fe3af85b3d",
|
436 |
+
"metadata": {},
|
437 |
+
"source": [
|
438 |
+
"### Using OpenAI Ada embedding"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"execution_count": 19,
|
444 |
+
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
445 |
+
"metadata": {},
|
446 |
+
"outputs": [
|
447 |
+
{
|
448 |
+
"name": "stderr",
|
449 |
+
"output_type": "stream",
|
450 |
+
"text": [
|
451 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
452 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"data": {
|
457 |
+
"application/vnd.jupyter.widget-view+json": {
|
458 |
+
"model_id": "3cd092342b1846ed9aa81f8de44eaaea",
|
459 |
+
"version_major": 2,
|
460 |
+
"version_minor": 0
|
461 |
+
},
|
462 |
+
"text/plain": [
|
463 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
"metadata": {},
|
467 |
+
"output_type": "display_data"
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"name": "stderr",
|
471 |
+
"output_type": "stream",
|
472 |
+
"text": [
|
473 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
474 |
+
"To disable this warning, you can either:\n",
|
475 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
476 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"data": {
|
481 |
+
"application/vnd.jupyter.widget-view+json": {
|
482 |
+
"model_id": "00a72686c4bc4e518e8c7f56124247ab",
|
483 |
+
"version_major": 2,
|
484 |
+
"version_minor": 0
|
485 |
+
},
|
486 |
+
"text/plain": [
|
487 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
"metadata": {},
|
491 |
+
"output_type": "display_data"
|
492 |
+
}
|
493 |
+
],
|
494 |
+
"source": [
|
495 |
+
"ada = OpenAIEmbedding()\n",
|
496 |
+
"ada_val_results = evaluate(val_dataset, ada)"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"cell_type": "code",
|
501 |
+
"execution_count": 20,
|
502 |
+
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
503 |
+
"metadata": {},
|
504 |
+
"outputs": [],
|
505 |
+
"source": [
|
506 |
+
"df_ada = pd.DataFrame(ada_val_results)"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"cell_type": "code",
|
511 |
+
"execution_count": 21,
|
512 |
+
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
513 |
+
"metadata": {},
|
514 |
+
"outputs": [
|
515 |
+
{
|
516 |
+
"data": {
|
517 |
+
"text/html": [
|
518 |
+
"<div>\n",
|
519 |
+
"<style scoped>\n",
|
520 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
521 |
+
" vertical-align: middle;\n",
|
522 |
+
" }\n",
|
523 |
+
"\n",
|
524 |
+
" .dataframe tbody tr th {\n",
|
525 |
+
" vertical-align: top;\n",
|
526 |
+
" }\n",
|
527 |
+
"\n",
|
528 |
+
" .dataframe thead th {\n",
|
529 |
+
" text-align: right;\n",
|
530 |
+
" }\n",
|
531 |
+
"</style>\n",
|
532 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
533 |
+
" <thead>\n",
|
534 |
+
" <tr style=\"text-align: right;\">\n",
|
535 |
+
" <th></th>\n",
|
536 |
+
" <th>is_hit</th>\n",
|
537 |
+
" <th>retrieved</th>\n",
|
538 |
+
" <th>expected</th>\n",
|
539 |
+
" <th>query</th>\n",
|
540 |
+
" </tr>\n",
|
541 |
+
" </thead>\n",
|
542 |
+
" <tbody>\n",
|
543 |
+
" <tr>\n",
|
544 |
+
" <th>0</th>\n",
|
545 |
+
" <td>False</td>\n",
|
546 |
+
" <td>[5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804...</td>\n",
|
547 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
548 |
+
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
549 |
+
" </tr>\n",
|
550 |
+
" <tr>\n",
|
551 |
+
" <th>1</th>\n",
|
552 |
+
" <td>True</td>\n",
|
553 |
+
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804...</td>\n",
|
554 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
555 |
+
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
556 |
+
" </tr>\n",
|
557 |
+
" <tr>\n",
|
558 |
+
" <th>2</th>\n",
|
559 |
+
" <td>True</td>\n",
|
560 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
561 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
562 |
+
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
563 |
+
" </tr>\n",
|
564 |
+
" <tr>\n",
|
565 |
+
" <th>3</th>\n",
|
566 |
+
" <td>True</td>\n",
|
567 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
568 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
569 |
+
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
570 |
+
" </tr>\n",
|
571 |
+
" <tr>\n",
|
572 |
+
" <th>4</th>\n",
|
573 |
+
" <td>True</td>\n",
|
574 |
+
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
575 |
+
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
576 |
+
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" </tbody>\n",
|
579 |
+
"</table>\n",
|
580 |
+
"</div>"
|
581 |
+
],
|
582 |
+
"text/plain": [
|
583 |
+
" is_hit retrieved \\\n",
|
584 |
+
"0 False [5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804... \n",
|
585 |
+
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804... \n",
|
586 |
+
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
587 |
+
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
588 |
+
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
589 |
+
"\n",
|
590 |
+
" expected query \n",
|
591 |
+
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
592 |
+
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
593 |
+
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
594 |
+
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
595 |
+
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
596 |
+
]
|
597 |
+
},
|
598 |
+
"execution_count": 21,
|
599 |
+
"metadata": {},
|
600 |
+
"output_type": "execute_result"
|
601 |
+
}
|
602 |
+
],
|
603 |
+
"source": [
|
604 |
+
"df_ada[:5]"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "code",
|
609 |
+
"execution_count": 22,
|
610 |
+
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
611 |
+
"metadata": {},
|
612 |
+
"outputs": [
|
613 |
+
{
|
614 |
+
"data": {
|
615 |
+
"text/plain": [
|
616 |
+
"(0.95, 200)"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
"execution_count": 22,
|
620 |
+
"metadata": {},
|
621 |
+
"output_type": "execute_result"
|
622 |
+
}
|
623 |
+
],
|
624 |
+
"source": [
|
625 |
+
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
626 |
+
"hit_rate_ada, len(df_ada)"
|
627 |
+
]
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"cell_type": "code",
|
631 |
+
"execution_count": null,
|
632 |
+
"id": "d044399a-e55b-40b7-a09d-6fb838383bfa",
|
633 |
+
"metadata": {},
|
634 |
+
"outputs": [],
|
635 |
+
"source": []
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"cell_type": "markdown",
|
639 |
+
"id": "66746f3e-638a-432c-a38d-7cb99d2093f7",
|
640 |
+
"metadata": {},
|
641 |
+
"source": [
|
642 |
+
"### Using BAAI bge-small model without fine-tuning"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": 23,
|
648 |
+
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
649 |
+
"metadata": {},
|
650 |
+
"outputs": [
|
651 |
+
{
|
652 |
+
"name": "stderr",
|
653 |
+
"output_type": "stream",
|
654 |
+
"text": [
|
655 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
656 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
657 |
+
]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"data": {
|
661 |
+
"application/vnd.jupyter.widget-view+json": {
|
662 |
+
"model_id": "ca1ac4b4b54f4169b909e5633b3eb1ad",
|
663 |
+
"version_major": 2,
|
664 |
+
"version_minor": 0
|
665 |
+
},
|
666 |
+
"text/plain": [
|
667 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
"metadata": {},
|
671 |
+
"output_type": "display_data"
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"data": {
|
675 |
+
"application/vnd.jupyter.widget-view+json": {
|
676 |
+
"model_id": "4293592aba3244a991fad843f5c881ba",
|
677 |
+
"version_major": 2,
|
678 |
+
"version_minor": 0
|
679 |
+
},
|
680 |
+
"text/plain": [
|
681 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
682 |
+
]
|
683 |
+
},
|
684 |
+
"metadata": {},
|
685 |
+
"output_type": "display_data"
|
686 |
+
}
|
687 |
+
],
|
688 |
+
"source": [
|
689 |
+
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
690 |
+
"bge_val_results = evaluate(val_dataset, bge)"
|
691 |
+
]
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"cell_type": "code",
|
695 |
+
"execution_count": 24,
|
696 |
+
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
697 |
+
"metadata": {},
|
698 |
+
"outputs": [],
|
699 |
+
"source": [
|
700 |
+
"df_bge = pd.DataFrame(bge_val_results)"
|
701 |
+
]
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"cell_type": "code",
|
705 |
+
"execution_count": 25,
|
706 |
+
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
707 |
+
"metadata": {},
|
708 |
+
"outputs": [
|
709 |
+
{
|
710 |
+
"data": {
|
711 |
+
"text/html": [
|
712 |
+
"<div>\n",
|
713 |
+
"<style scoped>\n",
|
714 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
715 |
+
" vertical-align: middle;\n",
|
716 |
+
" }\n",
|
717 |
+
"\n",
|
718 |
+
" .dataframe tbody tr th {\n",
|
719 |
+
" vertical-align: top;\n",
|
720 |
+
" }\n",
|
721 |
+
"\n",
|
722 |
+
" .dataframe thead th {\n",
|
723 |
+
" text-align: right;\n",
|
724 |
+
" }\n",
|
725 |
+
"</style>\n",
|
726 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
727 |
+
" <thead>\n",
|
728 |
+
" <tr style=\"text-align: right;\">\n",
|
729 |
+
" <th></th>\n",
|
730 |
+
" <th>is_hit</th>\n",
|
731 |
+
" <th>retrieved</th>\n",
|
732 |
+
" <th>expected</th>\n",
|
733 |
+
" <th>query</th>\n",
|
734 |
+
" </tr>\n",
|
735 |
+
" </thead>\n",
|
736 |
+
" <tbody>\n",
|
737 |
+
" <tr>\n",
|
738 |
+
" <th>0</th>\n",
|
739 |
+
" <td>False</td>\n",
|
740 |
+
" <td>[69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7...</td>\n",
|
741 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
742 |
+
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
743 |
+
" </tr>\n",
|
744 |
+
" <tr>\n",
|
745 |
+
" <th>1</th>\n",
|
746 |
+
" <td>True</td>\n",
|
747 |
+
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649...</td>\n",
|
748 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
749 |
+
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
750 |
+
" </tr>\n",
|
751 |
+
" <tr>\n",
|
752 |
+
" <th>2</th>\n",
|
753 |
+
" <td>True</td>\n",
|
754 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
755 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
756 |
+
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
757 |
+
" </tr>\n",
|
758 |
+
" <tr>\n",
|
759 |
+
" <th>3</th>\n",
|
760 |
+
" <td>True</td>\n",
|
761 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb...</td>\n",
|
762 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
763 |
+
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
764 |
+
" </tr>\n",
|
765 |
+
" <tr>\n",
|
766 |
+
" <th>4</th>\n",
|
767 |
+
" <td>True</td>\n",
|
768 |
+
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
769 |
+
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
770 |
+
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
771 |
+
" </tr>\n",
|
772 |
+
" </tbody>\n",
|
773 |
+
"</table>\n",
|
774 |
+
"</div>"
|
775 |
+
],
|
776 |
+
"text/plain": [
|
777 |
+
" is_hit retrieved \\\n",
|
778 |
+
"0 False [69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7... \n",
|
779 |
+
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649... \n",
|
780 |
+
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
781 |
+
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb... \n",
|
782 |
+
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
783 |
+
"\n",
|
784 |
+
" expected query \n",
|
785 |
+
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
786 |
+
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
787 |
+
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
788 |
+
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
789 |
+
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
790 |
+
]
|
791 |
+
},
|
792 |
+
"execution_count": 25,
|
793 |
+
"metadata": {},
|
794 |
+
"output_type": "execute_result"
|
795 |
+
}
|
796 |
+
],
|
797 |
+
"source": [
|
798 |
+
"df_bge[:5]"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"cell_type": "code",
|
803 |
+
"execution_count": 26,
|
804 |
+
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [
|
807 |
+
{
|
808 |
+
"data": {
|
809 |
+
"text/plain": [
|
810 |
+
"(0.915, 200)"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
"execution_count": 26,
|
814 |
+
"metadata": {},
|
815 |
+
"output_type": "execute_result"
|
816 |
+
}
|
817 |
+
],
|
818 |
+
"source": [
|
819 |
+
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
820 |
+
"hit_rate_bge, len(df_bge)"
|
821 |
+
]
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"cell_type": "code",
|
825 |
+
"execution_count": null,
|
826 |
+
"id": "7dd69ad1-2153-4df0-93f7-807fc289d3fd",
|
827 |
+
"metadata": {},
|
828 |
+
"outputs": [],
|
829 |
+
"source": []
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"cell_type": "code",
|
833 |
+
"execution_count": 27,
|
834 |
+
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
835 |
+
"metadata": {},
|
836 |
+
"outputs": [
|
837 |
+
{
|
838 |
+
"data": {
|
839 |
+
"text/plain": [
|
840 |
+
"0.7955697668171072"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
"execution_count": 27,
|
844 |
+
"metadata": {},
|
845 |
+
"output_type": "execute_result"
|
846 |
+
}
|
847 |
+
],
|
848 |
+
"source": [
|
849 |
+
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
850 |
+
]
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"cell_type": "code",
|
854 |
+
"execution_count": null,
|
855 |
+
"id": "6023382b-0ff5-4d60-aeac-ad523153f943",
|
856 |
+
"metadata": {},
|
857 |
+
"outputs": [],
|
858 |
+
"source": []
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"cell_type": "code",
|
862 |
+
"execution_count": null,
|
863 |
+
"id": "adf35a2a-3bb7-4251-9521-f35346a7c6e6",
|
864 |
+
"metadata": {},
|
865 |
+
"outputs": [],
|
866 |
+
"source": []
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"cell_type": "markdown",
|
870 |
+
"id": "b3d290c2-784f-4c41-a258-e11d2c5117e7",
|
871 |
+
"metadata": {},
|
872 |
+
"source": [
|
873 |
+
"### Using BAAI bge-small model with `fine-tuning`"
|
874 |
+
]
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"cell_type": "code",
|
878 |
+
"execution_count": 28,
|
879 |
+
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
880 |
+
"metadata": {},
|
881 |
+
"outputs": [
|
882 |
+
{
|
883 |
+
"name": "stderr",
|
884 |
+
"output_type": "stream",
|
885 |
+
"text": [
|
886 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
887 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
888 |
+
]
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"data": {
|
892 |
+
"application/vnd.jupyter.widget-view+json": {
|
893 |
+
"model_id": "9ddb31814f674c658e4b509c45104c7a",
|
894 |
+
"version_major": 2,
|
895 |
+
"version_minor": 0
|
896 |
+
},
|
897 |
+
"text/plain": [
|
898 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"metadata": {},
|
902 |
+
"output_type": "display_data"
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"data": {
|
906 |
+
"application/vnd.jupyter.widget-view+json": {
|
907 |
+
"model_id": "6e781eff650b4cd28345ed4a0c919a28",
|
908 |
+
"version_major": 2,
|
909 |
+
"version_minor": 0
|
910 |
+
},
|
911 |
+
"text/plain": [
|
912 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
913 |
+
]
|
914 |
+
},
|
915 |
+
"metadata": {},
|
916 |
+
"output_type": "display_data"
|
917 |
+
}
|
918 |
+
],
|
919 |
+
"source": [
|
920 |
+
"finetuned = \"local:../models/fine-tuned-embeddings-advanced\"\n",
|
921 |
+
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
922 |
+
]
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"cell_type": "code",
|
926 |
+
"execution_count": 29,
|
927 |
+
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
928 |
+
"metadata": {},
|
929 |
+
"outputs": [],
|
930 |
+
"source": [
|
931 |
+
"df_finetuned = pd.DataFrame(val_results_finetuned)"
|
932 |
+
]
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"cell_type": "code",
|
936 |
+
"execution_count": 30,
|
937 |
+
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
938 |
+
"metadata": {},
|
939 |
+
"outputs": [
|
940 |
+
{
|
941 |
+
"data": {
|
942 |
+
"text/plain": [
|
943 |
+
"0.97"
|
944 |
+
]
|
945 |
+
},
|
946 |
+
"execution_count": 30,
|
947 |
+
"metadata": {},
|
948 |
+
"output_type": "execute_result"
|
949 |
+
}
|
950 |
+
],
|
951 |
+
"source": [
|
952 |
+
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
953 |
+
"hit_rate_finetuned"
|
954 |
+
]
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"cell_type": "code",
|
958 |
+
"execution_count": 31,
|
959 |
+
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
960 |
+
"metadata": {},
|
961 |
+
"outputs": [
|
962 |
+
{
|
963 |
+
"data": {
|
964 |
+
"text/plain": [
|
965 |
+
"0.8835191391941393"
|
966 |
+
]
|
967 |
+
},
|
968 |
+
"execution_count": 31,
|
969 |
+
"metadata": {},
|
970 |
+
"output_type": "execute_result"
|
971 |
+
}
|
972 |
+
],
|
973 |
+
"source": [
|
974 |
+
"evaluate_st(val_dataset, \"../models/fine-tuned-embeddings-advanced\", name=\"finetuned\")"
|
975 |
+
]
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"cell_type": "code",
|
979 |
+
"execution_count": null,
|
980 |
+
"id": "b0003812-84a2-4ebd-9372-07bf874a486b",
|
981 |
+
"metadata": {},
|
982 |
+
"outputs": [],
|
983 |
+
"source": []
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"cell_type": "markdown",
|
987 |
+
"id": "ae7eb6ff-181b-42c8-975c-ca3320158698",
|
988 |
+
"metadata": {},
|
989 |
+
"source": [
|
990 |
+
"### Summary"
|
991 |
+
]
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"cell_type": "code",
|
995 |
+
"execution_count": 32,
|
996 |
+
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
997 |
+
"metadata": {},
|
998 |
+
"outputs": [],
|
999 |
+
"source": [
|
1000 |
+
"df_ada[\"model\"] = \"ada\"\n",
|
1001 |
+
"df_bge[\"model\"] = \"bge\"\n",
|
1002 |
+
"df_finetuned[\"model\"] = \"fine_tuned\""
|
1003 |
+
]
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"cell_type": "code",
|
1007 |
+
"execution_count": 33,
|
1008 |
+
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
1009 |
+
"metadata": {},
|
1010 |
+
"outputs": [
|
1011 |
+
{
|
1012 |
+
"data": {
|
1013 |
+
"text/html": [
|
1014 |
+
"<div>\n",
|
1015 |
+
"<style scoped>\n",
|
1016 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1017 |
+
" vertical-align: middle;\n",
|
1018 |
+
" }\n",
|
1019 |
+
"\n",
|
1020 |
+
" .dataframe tbody tr th {\n",
|
1021 |
+
" vertical-align: top;\n",
|
1022 |
+
" }\n",
|
1023 |
+
"\n",
|
1024 |
+
" .dataframe thead th {\n",
|
1025 |
+
" text-align: right;\n",
|
1026 |
+
" }\n",
|
1027 |
+
"</style>\n",
|
1028 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1029 |
+
" <thead>\n",
|
1030 |
+
" <tr style=\"text-align: right;\">\n",
|
1031 |
+
" <th></th>\n",
|
1032 |
+
" <th>is_hit</th>\n",
|
1033 |
+
" </tr>\n",
|
1034 |
+
" <tr>\n",
|
1035 |
+
" <th>model</th>\n",
|
1036 |
+
" <th></th>\n",
|
1037 |
+
" </tr>\n",
|
1038 |
+
" </thead>\n",
|
1039 |
+
" <tbody>\n",
|
1040 |
+
" <tr>\n",
|
1041 |
+
" <th>ada</th>\n",
|
1042 |
+
" <td>0.950</td>\n",
|
1043 |
+
" </tr>\n",
|
1044 |
+
" <tr>\n",
|
1045 |
+
" <th>bge</th>\n",
|
1046 |
+
" <td>0.915</td>\n",
|
1047 |
+
" </tr>\n",
|
1048 |
+
" <tr>\n",
|
1049 |
+
" <th>fine_tuned</th>\n",
|
1050 |
+
" <td>0.970</td>\n",
|
1051 |
+
" </tr>\n",
|
1052 |
+
" </tbody>\n",
|
1053 |
+
"</table>\n",
|
1054 |
+
"</div>"
|
1055 |
+
],
|
1056 |
+
"text/plain": [
|
1057 |
+
" is_hit\n",
|
1058 |
+
"model \n",
|
1059 |
+
"ada 0.950\n",
|
1060 |
+
"bge 0.915\n",
|
1061 |
+
"fine_tuned 0.970"
|
1062 |
+
]
|
1063 |
+
},
|
1064 |
+
"execution_count": 33,
|
1065 |
+
"metadata": {},
|
1066 |
+
"output_type": "execute_result"
|
1067 |
+
}
|
1068 |
+
],
|
1069 |
+
"source": [
|
1070 |
+
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
1071 |
+
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
1072 |
+
]
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"cell_type": "code",
|
1076 |
+
"execution_count": null,
|
1077 |
+
"id": "72575c28-a221-4967-8f04-9579dcefa8f8",
|
1078 |
+
"metadata": {},
|
1079 |
+
"outputs": [],
|
1080 |
+
"source": []
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"cell_type": "code",
|
1084 |
+
"execution_count": 35,
|
1085 |
+
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
1086 |
+
"metadata": {},
|
1087 |
+
"outputs": [],
|
1088 |
+
"source": [
|
1089 |
+
"df_st_bge = pd.read_csv(\n",
|
1090 |
+
" \"../results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
1091 |
+
")\n",
|
1092 |
+
"df_st_finetuned = pd.read_csv(\n",
|
1093 |
+
" \"../results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
1094 |
+
")"
|
1095 |
+
]
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"cell_type": "code",
|
1099 |
+
"execution_count": null,
|
1100 |
+
"id": "a509f239-8b28-4d0a-9101-c8de91c7943b",
|
1101 |
+
"metadata": {},
|
1102 |
+
"outputs": [],
|
1103 |
+
"source": []
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"cell_type": "code",
|
1107 |
+
"execution_count": 36,
|
1108 |
+
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
1109 |
+
"metadata": {},
|
1110 |
+
"outputs": [
|
1111 |
+
{
|
1112 |
+
"data": {
|
1113 |
+
"text/html": [
|
1114 |
+
"<div>\n",
|
1115 |
+
"<style scoped>\n",
|
1116 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1117 |
+
" vertical-align: middle;\n",
|
1118 |
+
" }\n",
|
1119 |
+
"\n",
|
1120 |
+
" .dataframe tbody tr th {\n",
|
1121 |
+
" vertical-align: top;\n",
|
1122 |
+
" }\n",
|
1123 |
+
"\n",
|
1124 |
+
" .dataframe thead th {\n",
|
1125 |
+
" text-align: right;\n",
|
1126 |
+
" }\n",
|
1127 |
+
"</style>\n",
|
1128 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1129 |
+
" <thead>\n",
|
1130 |
+
" <tr style=\"text-align: right;\">\n",
|
1131 |
+
" <th></th>\n",
|
1132 |
+
" <th>epoch</th>\n",
|
1133 |
+
" <th>steps</th>\n",
|
1134 |
+
" <th>cos_sim-Accuracy@1</th>\n",
|
1135 |
+
" <th>cos_sim-Accuracy@3</th>\n",
|
1136 |
+
" <th>cos_sim-Accuracy@5</th>\n",
|
1137 |
+
" <th>cos_sim-Accuracy@10</th>\n",
|
1138 |
+
" <th>cos_sim-Precision@1</th>\n",
|
1139 |
+
" <th>cos_sim-Recall@1</th>\n",
|
1140 |
+
" <th>cos_sim-Precision@3</th>\n",
|
1141 |
+
" <th>cos_sim-Recall@3</th>\n",
|
1142 |
+
" <th>...</th>\n",
|
1143 |
+
" <th>dot_score-Recall@1</th>\n",
|
1144 |
+
" <th>dot_score-Precision@3</th>\n",
|
1145 |
+
" <th>dot_score-Recall@3</th>\n",
|
1146 |
+
" <th>dot_score-Precision@5</th>\n",
|
1147 |
+
" <th>dot_score-Recall@5</th>\n",
|
1148 |
+
" <th>dot_score-Precision@10</th>\n",
|
1149 |
+
" <th>dot_score-Recall@10</th>\n",
|
1150 |
+
" <th>dot_score-MRR@10</th>\n",
|
1151 |
+
" <th>dot_score-NDCG@10</th>\n",
|
1152 |
+
" <th>dot_score-MAP@100</th>\n",
|
1153 |
+
" </tr>\n",
|
1154 |
+
" <tr>\n",
|
1155 |
+
" <th>model</th>\n",
|
1156 |
+
" <th></th>\n",
|
1157 |
+
" <th></th>\n",
|
1158 |
+
" <th></th>\n",
|
1159 |
+
" <th></th>\n",
|
1160 |
+
" <th></th>\n",
|
1161 |
+
" <th></th>\n",
|
1162 |
+
" <th></th>\n",
|
1163 |
+
" <th></th>\n",
|
1164 |
+
" <th></th>\n",
|
1165 |
+
" <th></th>\n",
|
1166 |
+
" <th></th>\n",
|
1167 |
+
" <th></th>\n",
|
1168 |
+
" <th></th>\n",
|
1169 |
+
" <th></th>\n",
|
1170 |
+
" <th></th>\n",
|
1171 |
+
" <th></th>\n",
|
1172 |
+
" <th></th>\n",
|
1173 |
+
" <th></th>\n",
|
1174 |
+
" <th></th>\n",
|
1175 |
+
" <th></th>\n",
|
1176 |
+
" <th></th>\n",
|
1177 |
+
" </tr>\n",
|
1178 |
+
" </thead>\n",
|
1179 |
+
" <tbody>\n",
|
1180 |
+
" <tr>\n",
|
1181 |
+
" <th>bge</th>\n",
|
1182 |
+
" <td>-1</td>\n",
|
1183 |
+
" <td>-1</td>\n",
|
1184 |
+
" <td>0.705</td>\n",
|
1185 |
+
" <td>0.865</td>\n",
|
1186 |
+
" <td>0.920</td>\n",
|
1187 |
+
" <td>0.96</td>\n",
|
1188 |
+
" <td>0.705</td>\n",
|
1189 |
+
" <td>0.705</td>\n",
|
1190 |
+
" <td>0.288333</td>\n",
|
1191 |
+
" <td>0.865</td>\n",
|
1192 |
+
" <td>...</td>\n",
|
1193 |
+
" <td>0.705</td>\n",
|
1194 |
+
" <td>0.288333</td>\n",
|
1195 |
+
" <td>0.865</td>\n",
|
1196 |
+
" <td>0.184</td>\n",
|
1197 |
+
" <td>0.920</td>\n",
|
1198 |
+
" <td>0.096</td>\n",
|
1199 |
+
" <td>0.96</td>\n",
|
1200 |
+
" <td>0.792935</td>\n",
|
1201 |
+
" <td>0.833595</td>\n",
|
1202 |
+
" <td>0.795570</td>\n",
|
1203 |
+
" </tr>\n",
|
1204 |
+
" <tr>\n",
|
1205 |
+
" <th>bge</th>\n",
|
1206 |
+
" <td>-1</td>\n",
|
1207 |
+
" <td>-1</td>\n",
|
1208 |
+
" <td>0.705</td>\n",
|
1209 |
+
" <td>0.865</td>\n",
|
1210 |
+
" <td>0.920</td>\n",
|
1211 |
+
" <td>0.96</td>\n",
|
1212 |
+
" <td>0.705</td>\n",
|
1213 |
+
" <td>0.705</td>\n",
|
1214 |
+
" <td>0.288333</td>\n",
|
1215 |
+
" <td>0.865</td>\n",
|
1216 |
+
" <td>...</td>\n",
|
1217 |
+
" <td>0.705</td>\n",
|
1218 |
+
" <td>0.288333</td>\n",
|
1219 |
+
" <td>0.865</td>\n",
|
1220 |
+
" <td>0.184</td>\n",
|
1221 |
+
" <td>0.920</td>\n",
|
1222 |
+
" <td>0.096</td>\n",
|
1223 |
+
" <td>0.96</td>\n",
|
1224 |
+
" <td>0.792935</td>\n",
|
1225 |
+
" <td>0.833595</td>\n",
|
1226 |
+
" <td>0.795570</td>\n",
|
1227 |
+
" </tr>\n",
|
1228 |
+
" <tr>\n",
|
1229 |
+
" <th>bge</th>\n",
|
1230 |
+
" <td>-1</td>\n",
|
1231 |
+
" <td>-1</td>\n",
|
1232 |
+
" <td>0.705</td>\n",
|
1233 |
+
" <td>0.865</td>\n",
|
1234 |
+
" <td>0.920</td>\n",
|
1235 |
+
" <td>0.96</td>\n",
|
1236 |
+
" <td>0.705</td>\n",
|
1237 |
+
" <td>0.705</td>\n",
|
1238 |
+
" <td>0.288333</td>\n",
|
1239 |
+
" <td>0.865</td>\n",
|
1240 |
+
" <td>...</td>\n",
|
1241 |
+
" <td>0.705</td>\n",
|
1242 |
+
" <td>0.288333</td>\n",
|
1243 |
+
" <td>0.865</td>\n",
|
1244 |
+
" <td>0.184</td>\n",
|
1245 |
+
" <td>0.920</td>\n",
|
1246 |
+
" <td>0.096</td>\n",
|
1247 |
+
" <td>0.96</td>\n",
|
1248 |
+
" <td>0.792935</td>\n",
|
1249 |
+
" <td>0.833595</td>\n",
|
1250 |
+
" <td>0.795570</td>\n",
|
1251 |
+
" </tr>\n",
|
1252 |
+
" <tr>\n",
|
1253 |
+
" <th>fine_tuned</th>\n",
|
1254 |
+
" <td>-1</td>\n",
|
1255 |
+
" <td>-1</td>\n",
|
1256 |
+
" <td>0.790</td>\n",
|
1257 |
+
" <td>0.900</td>\n",
|
1258 |
+
" <td>0.970</td>\n",
|
1259 |
+
" <td>0.98</td>\n",
|
1260 |
+
" <td>0.790</td>\n",
|
1261 |
+
" <td>0.790</td>\n",
|
1262 |
+
" <td>0.300000</td>\n",
|
1263 |
+
" <td>0.900</td>\n",
|
1264 |
+
" <td>...</td>\n",
|
1265 |
+
" <td>0.790</td>\n",
|
1266 |
+
" <td>0.300000</td>\n",
|
1267 |
+
" <td>0.900</td>\n",
|
1268 |
+
" <td>0.194</td>\n",
|
1269 |
+
" <td>0.970</td>\n",
|
1270 |
+
" <td>0.098</td>\n",
|
1271 |
+
" <td>0.98</td>\n",
|
1272 |
+
" <td>0.856264</td>\n",
|
1273 |
+
" <td>0.886738</td>\n",
|
1274 |
+
" <td>0.857339</td>\n",
|
1275 |
+
" </tr>\n",
|
1276 |
+
" <tr>\n",
|
1277 |
+
" <th>fine_tuned</th>\n",
|
1278 |
+
" <td>-1</td>\n",
|
1279 |
+
" <td>-1</td>\n",
|
1280 |
+
" <td>0.790</td>\n",
|
1281 |
+
" <td>0.900</td>\n",
|
1282 |
+
" <td>0.970</td>\n",
|
1283 |
+
" <td>0.98</td>\n",
|
1284 |
+
" <td>0.790</td>\n",
|
1285 |
+
" <td>0.790</td>\n",
|
1286 |
+
" <td>0.300000</td>\n",
|
1287 |
+
" <td>0.900</td>\n",
|
1288 |
+
" <td>...</td>\n",
|
1289 |
+
" <td>0.790</td>\n",
|
1290 |
+
" <td>0.300000</td>\n",
|
1291 |
+
" <td>0.900</td>\n",
|
1292 |
+
" <td>0.194</td>\n",
|
1293 |
+
" <td>0.970</td>\n",
|
1294 |
+
" <td>0.098</td>\n",
|
1295 |
+
" <td>0.98</td>\n",
|
1296 |
+
" <td>0.856264</td>\n",
|
1297 |
+
" <td>0.886738</td>\n",
|
1298 |
+
" <td>0.857339</td>\n",
|
1299 |
+
" </tr>\n",
|
1300 |
+
" <tr>\n",
|
1301 |
+
" <th>fine_tuned</th>\n",
|
1302 |
+
" <td>-1</td>\n",
|
1303 |
+
" <td>-1</td>\n",
|
1304 |
+
" <td>0.770</td>\n",
|
1305 |
+
" <td>0.910</td>\n",
|
1306 |
+
" <td>0.965</td>\n",
|
1307 |
+
" <td>0.98</td>\n",
|
1308 |
+
" <td>0.770</td>\n",
|
1309 |
+
" <td>0.770</td>\n",
|
1310 |
+
" <td>0.303333</td>\n",
|
1311 |
+
" <td>0.910</td>\n",
|
1312 |
+
" <td>...</td>\n",
|
1313 |
+
" <td>0.770</td>\n",
|
1314 |
+
" <td>0.303333</td>\n",
|
1315 |
+
" <td>0.910</td>\n",
|
1316 |
+
" <td>0.193</td>\n",
|
1317 |
+
" <td>0.965</td>\n",
|
1318 |
+
" <td>0.098</td>\n",
|
1319 |
+
" <td>0.98</td>\n",
|
1320 |
+
" <td>0.847542</td>\n",
|
1321 |
+
" <td>0.880388</td>\n",
|
1322 |
+
" <td>0.848711</td>\n",
|
1323 |
+
" </tr>\n",
|
1324 |
+
" <tr>\n",
|
1325 |
+
" <th>fine_tuned</th>\n",
|
1326 |
+
" <td>-1</td>\n",
|
1327 |
+
" <td>-1</td>\n",
|
1328 |
+
" <td>0.815</td>\n",
|
1329 |
+
" <td>0.945</td>\n",
|
1330 |
+
" <td>0.970</td>\n",
|
1331 |
+
" <td>0.99</td>\n",
|
1332 |
+
" <td>0.815</td>\n",
|
1333 |
+
" <td>0.815</td>\n",
|
1334 |
+
" <td>0.315000</td>\n",
|
1335 |
+
" <td>0.945</td>\n",
|
1336 |
+
" <td>...</td>\n",
|
1337 |
+
" <td>0.815</td>\n",
|
1338 |
+
" <td>0.315000</td>\n",
|
1339 |
+
" <td>0.945</td>\n",
|
1340 |
+
" <td>0.194</td>\n",
|
1341 |
+
" <td>0.970</td>\n",
|
1342 |
+
" <td>0.099</td>\n",
|
1343 |
+
" <td>0.99</td>\n",
|
1344 |
+
" <td>0.882935</td>\n",
|
1345 |
+
" <td>0.909563</td>\n",
|
1346 |
+
" <td>0.883519</td>\n",
|
1347 |
+
" </tr>\n",
|
1348 |
+
" </tbody>\n",
|
1349 |
+
"</table>\n",
|
1350 |
+
"<p>7 rows Γ 32 columns</p>\n",
|
1351 |
+
"</div>"
|
1352 |
+
],
|
1353 |
+
"text/plain": [
|
1354 |
+
" epoch steps cos_sim-Accuracy@1 cos_sim-Accuracy@3 \\\n",
|
1355 |
+
"model \n",
|
1356 |
+
"bge -1 -1 0.705 0.865 \n",
|
1357 |
+
"bge -1 -1 0.705 0.865 \n",
|
1358 |
+
"bge -1 -1 0.705 0.865 \n",
|
1359 |
+
"fine_tuned -1 -1 0.790 0.900 \n",
|
1360 |
+
"fine_tuned -1 -1 0.790 0.900 \n",
|
1361 |
+
"fine_tuned -1 -1 0.770 0.910 \n",
|
1362 |
+
"fine_tuned -1 -1 0.815 0.945 \n",
|
1363 |
+
"\n",
|
1364 |
+
" cos_sim-Accuracy@5 cos_sim-Accuracy@10 cos_sim-Precision@1 \\\n",
|
1365 |
+
"model \n",
|
1366 |
+
"bge 0.920 0.96 0.705 \n",
|
1367 |
+
"bge 0.920 0.96 0.705 \n",
|
1368 |
+
"bge 0.920 0.96 0.705 \n",
|
1369 |
+
"fine_tuned 0.970 0.98 0.790 \n",
|
1370 |
+
"fine_tuned 0.970 0.98 0.790 \n",
|
1371 |
+
"fine_tuned 0.965 0.98 0.770 \n",
|
1372 |
+
"fine_tuned 0.970 0.99 0.815 \n",
|
1373 |
+
"\n",
|
1374 |
+
" cos_sim-Recall@1 cos_sim-Precision@3 cos_sim-Recall@3 ... \\\n",
|
1375 |
+
"model ... \n",
|
1376 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
1377 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
1378 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
1379 |
+
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
1380 |
+
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
1381 |
+
"fine_tuned 0.770 0.303333 0.910 ... \n",
|
1382 |
+
"fine_tuned 0.815 0.315000 0.945 ... \n",
|
1383 |
+
"\n",
|
1384 |
+
" dot_score-Recall@1 dot_score-Precision@3 dot_score-Recall@3 \\\n",
|
1385 |
+
"model \n",
|
1386 |
+
"bge 0.705 0.288333 0.865 \n",
|
1387 |
+
"bge 0.705 0.288333 0.865 \n",
|
1388 |
+
"bge 0.705 0.288333 0.865 \n",
|
1389 |
+
"fine_tuned 0.790 0.300000 0.900 \n",
|
1390 |
+
"fine_tuned 0.790 0.300000 0.900 \n",
|
1391 |
+
"fine_tuned 0.770 0.303333 0.910 \n",
|
1392 |
+
"fine_tuned 0.815 0.315000 0.945 \n",
|
1393 |
+
"\n",
|
1394 |
+
" dot_score-Precision@5 dot_score-Recall@5 dot_score-Precision@10 \\\n",
|
1395 |
+
"model \n",
|
1396 |
+
"bge 0.184 0.920 0.096 \n",
|
1397 |
+
"bge 0.184 0.920 0.096 \n",
|
1398 |
+
"bge 0.184 0.920 0.096 \n",
|
1399 |
+
"fine_tuned 0.194 0.970 0.098 \n",
|
1400 |
+
"fine_tuned 0.194 0.970 0.098 \n",
|
1401 |
+
"fine_tuned 0.193 0.965 0.098 \n",
|
1402 |
+
"fine_tuned 0.194 0.970 0.099 \n",
|
1403 |
+
"\n",
|
1404 |
+
" dot_score-Recall@10 dot_score-MRR@10 dot_score-NDCG@10 \\\n",
|
1405 |
+
"model \n",
|
1406 |
+
"bge 0.96 0.792935 0.833595 \n",
|
1407 |
+
"bge 0.96 0.792935 0.833595 \n",
|
1408 |
+
"bge 0.96 0.792935 0.833595 \n",
|
1409 |
+
"fine_tuned 0.98 0.856264 0.886738 \n",
|
1410 |
+
"fine_tuned 0.98 0.856264 0.886738 \n",
|
1411 |
+
"fine_tuned 0.98 0.847542 0.880388 \n",
|
1412 |
+
"fine_tuned 0.99 0.882935 0.909563 \n",
|
1413 |
+
"\n",
|
1414 |
+
" dot_score-MAP@100 \n",
|
1415 |
+
"model \n",
|
1416 |
+
"bge 0.795570 \n",
|
1417 |
+
"bge 0.795570 \n",
|
1418 |
+
"bge 0.795570 \n",
|
1419 |
+
"fine_tuned 0.857339 \n",
|
1420 |
+
"fine_tuned 0.857339 \n",
|
1421 |
+
"fine_tuned 0.848711 \n",
|
1422 |
+
"fine_tuned 0.883519 \n",
|
1423 |
+
"\n",
|
1424 |
+
"[7 rows x 32 columns]"
|
1425 |
+
]
|
1426 |
+
},
|
1427 |
+
"execution_count": 36,
|
1428 |
+
"metadata": {},
|
1429 |
+
"output_type": "execute_result"
|
1430 |
+
}
|
1431 |
+
],
|
1432 |
+
"source": [
|
1433 |
+
"df_st_bge[\"model\"] = \"bge\"\n",
|
1434 |
+
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
1435 |
+
"df_st_all = pd.concat([df_st_bge, df_st_finetuned])\n",
|
1436 |
+
"df_st_all = df_st_all.set_index(\"model\")\n",
|
1437 |
+
"df_st_all"
|
1438 |
+
]
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"cell_type": "code",
|
1442 |
+
"execution_count": null,
|
1443 |
+
"id": "6ed2321b-6618-4a2b-9b1c-028425e91b84",
|
1444 |
+
"metadata": {},
|
1445 |
+
"outputs": [],
|
1446 |
+
"source": []
|
1447 |
+
}
|
1448 |
+
],
|
1449 |
+
"metadata": {
|
1450 |
+
"kernelspec": {
|
1451 |
+
"display_name": "Python 3 (ipykernel)",
|
1452 |
+
"language": "python",
|
1453 |
+
"name": "python3"
|
1454 |
+
},
|
1455 |
+
"language_info": {
|
1456 |
+
"codemirror_mode": {
|
1457 |
+
"name": "ipython",
|
1458 |
+
"version": 3
|
1459 |
+
},
|
1460 |
+
"file_extension": ".py",
|
1461 |
+
"mimetype": "text/x-python",
|
1462 |
+
"name": "python",
|
1463 |
+
"nbconvert_exporter": "python",
|
1464 |
+
"pygments_lexer": "ipython3",
|
1465 |
+
"version": "3.9.18"
|
1466 |
+
}
|
1467 |
+
},
|
1468 |
+
"nbformat": 4,
|
1469 |
+
"nbformat_minor": 5
|
1470 |
+
}
|
notebooks/002_persisted-embedding-model-advanced.ipynb
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "8acae3ed-2953-45a3-aba9-0327b6ae3679",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### ChromaDB method - create vectorstore based on Chroma"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "7de9c591-5a77-4bbe-80f1-4897e15f0b97",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import chromadb\n",
|
19 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
20 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
21 |
+
"from llama_index.core import StorageContext\n",
|
22 |
+
"from llama_index.core import ServiceContext\n",
|
23 |
+
"from llama_index.core import Document\n",
|
24 |
+
"\n",
|
25 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
26 |
+
"from llama_index.core import Settings\n",
|
27 |
+
"\n",
|
28 |
+
"import nest_asyncio\n",
|
29 |
+
"nest_asyncio.apply()\n",
|
30 |
+
"\n",
|
31 |
+
"import time"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"id": "3e65dff6-77b6-4be8-8857-5cecf3a035bb",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# load some documents\n",
|
42 |
+
"documents = SimpleDirectoryReader(input_files=[\n",
|
43 |
+
" \"../raw_documents/qna.txt\",\n",
|
44 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
45 |
+
" \"../raw_documents/conversation_examples.txt\",\n",
|
46 |
+
" \"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
47 |
+
" \"../raw_documents/answers.txt\",\n",
|
48 |
+
" ]).load_data()\n",
|
49 |
+
"document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"id": "bd86b3f5-1dfc-4257-bd9c-86d34f02398d",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"# initialize client, setting path to save data\n",
|
60 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db_advanced\")"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"id": "f568ce7b-bcbf-455c-acf1-6c2cae129fed",
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"# create collection\n",
|
71 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"id": "ed0b018e-1982-46b2-b1b4-04f5c0ce8672",
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"# assign chroma as the vector_store to the context\n",
|
82 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"id": "eb5edab2-30db-4bf7-96b5-4005d3161988",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": []
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"id": "0946b6ce-96ab-44de-ad75-e424a8429f67",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"Settings.llm = None\n",
|
101 |
+
"Settings.chunk_size = 1024\n",
|
102 |
+
"Settings.embed_model = \"local:../models/fine-tuned-embeddings-advanced\""
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"id": "b8c73a2c-1129-406a-8046-085afcaf9cbb",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"nodes = Settings.node_parser.get_nodes_from_documents(documents)"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"id": "75f1c76f-d3e5-4b69-818c-98865adb1457",
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"len(nodes)"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"id": "adfe688f-95c0-477c-a9de-e9e77541a1d7",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": []
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"id": "dab4c6f3-ef67-4d90-b3d5-e290c5d1b6f4",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"id": "6a764113-ad7e-4674-aa57-ebbf405902a8",
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [],
|
149 |
+
"source": [
|
150 |
+
"storage_context.docstore.add_documents(nodes)"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": null,
|
156 |
+
"id": "38e7c88d-6c45-4275-8293-d09b4b85a7cf",
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": []
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"id": "e492ed4a-23a3-47d6-8b50-51fb48b3aa05",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"start_time = time.time()"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": null,
|
174 |
+
"id": "cbd11b89-9b83-4f08-bb30-160f750f2ffb",
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"vector_index = VectorStoreIndex(nodes, storage_context=storage_context)"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": null,
|
184 |
+
"id": "082a0d7e-b025-4db1-be2a-7a0b7bc453b9",
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"vector_query_engine = vector_index.as_query_engine()"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": null,
|
194 |
+
"id": "d3bd848d-9985-4a3d-bdc4-ec340cc69ef3",
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"indexing_cost = time.time() - start_time\n",
|
199 |
+
"indexing_cost = indexing_cost / 60\n",
|
200 |
+
"print(f\"Indexing time: {indexing_cost:.1f} mins\")"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
+
"id": "3290e870-41d7-49c4-9c4f-cb16bd1f469e",
|
207 |
+
"metadata": {
|
208 |
+
"scrolled": true
|
209 |
+
},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"response = vector_query_engine.query(\"Healthcare System in Singapore consists of?\")\n",
|
213 |
+
"response"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"id": "131d907a-0677-4ad8-b3f7-6fc9b9c5d0a5",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": []
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "08fb2be5-3a44-4bb8-a9fc-61d7f03b7a35",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": []
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "markdown",
|
234 |
+
"id": "a7fc01f6-4738-415b-a96b-afd6cf8d789a",
|
235 |
+
"metadata": {},
|
236 |
+
"source": [
|
237 |
+
"### ChromaDB method - load vectorstore based on Chroma"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"id": "c1a42c35-5f57-423c-8fb7-7d18b3b466b5",
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"import chromadb\n",
|
248 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
249 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
250 |
+
"from llama_index.core import StorageContext\n",
|
251 |
+
"from llama_index.core import ServiceContext\n",
|
252 |
+
"from llama_index.core import Document\n",
|
253 |
+
"from llama_index.core import Settings\n",
|
254 |
+
"\n",
|
255 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
256 |
+
"from llama_index.llms.openai import OpenAI\n",
|
257 |
+
"from llama_index.core.memory import ChatMemoryBuffer\n",
|
258 |
+
"\n",
|
259 |
+
"import time"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
+
"id": "72dd0ece-c72d-428a-89b4-9494d948c845",
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [],
|
268 |
+
"source": []
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"id": "d38dc953-b923-4128-86a1-c8c6f69af0ed",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"fine_tuned_path = \"local:../models/fine-tuned-embeddings-advanced\""
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": null,
|
283 |
+
"id": "4c83c613-2cfc-4871-9d07-c82f77a3bd5e",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"llm = OpenAI(model=\"gpt-4-0125-preview\", temperature=0.0)"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": null,
|
293 |
+
"id": "0583e9b0-d977-488c-8331-46dfa749924c",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"Settings.llm = llm\n",
|
298 |
+
"Settings.embed_model = fine_tuned_path"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": null,
|
304 |
+
"id": "f994f440-f647-48b4-a517-46a79f7561e5",
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": []
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": null,
|
312 |
+
"id": "2159a2b6-494b-41b9-ac54-dd342bfb74ba",
|
313 |
+
"metadata": {},
|
314 |
+
"outputs": [],
|
315 |
+
"source": [
|
316 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db_advanced\")"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": null,
|
322 |
+
"id": "1b385644-b46e-4d13-88fa-9f4af39db405",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"execution_count": null,
|
332 |
+
"id": "93cb53d1-6b8c-4b2d-a839-53501c0d54b2",
|
333 |
+
"metadata": {},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"# assign chroma as the vector_store to the context\n",
|
337 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
338 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": null,
|
344 |
+
"id": "c40d59e1-6d42-41f0-8c9b-70aa026093ae",
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [],
|
347 |
+
"source": [
|
348 |
+
"# create your index\n",
|
349 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
350 |
+
" vector_store=vector_store,\n",
|
351 |
+
" storage_context=storage_context\n",
|
352 |
+
")"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": null,
|
358 |
+
"id": "73ba6d06-ba69-4b5e-962a-9cf7d2dc4d94",
|
359 |
+
"metadata": {},
|
360 |
+
"outputs": [],
|
361 |
+
"source": []
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"execution_count": null,
|
366 |
+
"id": "1a506940-c2b4-4d14-ad93-fd451331c582",
|
367 |
+
"metadata": {},
|
368 |
+
"outputs": [],
|
369 |
+
"source": [
|
370 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
371 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
372 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
373 |
+
")"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": null,
|
379 |
+
"id": "3f592848-8536-4b4d-b34a-adc32d043432",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [],
|
382 |
+
"source": [
|
383 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=100_000)"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": null,
|
389 |
+
"id": "6c7df81a-fd2f-42bf-b09c-46d7750f7252",
|
390 |
+
"metadata": {},
|
391 |
+
"outputs": [],
|
392 |
+
"source": [
|
393 |
+
"chat_engine = index.as_chat_engine(\n",
|
394 |
+
" chat_mode=\"context\",\n",
|
395 |
+
" memory=memory,\n",
|
396 |
+
" system_prompt=system_content\n",
|
397 |
+
")"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": null,
|
403 |
+
"id": "434f0caf-8b1f-40c6-b9ec-b039cd1ca612",
|
404 |
+
"metadata": {},
|
405 |
+
"outputs": [],
|
406 |
+
"source": [
|
407 |
+
"prompt = \"\"\"\n",
|
408 |
+
"Question: Which of the following is NOT a characteristic of medical expense insurance?\n",
|
409 |
+
"A. Pro ration factor and co-insurance.\n",
|
410 |
+
"B. Deductibles apply for all treatments.\n",
|
411 |
+
"C. Impose Sub- Limits.\n",
|
412 |
+
"D. Can be issued as a rider or stand-alone.\n",
|
413 |
+
"\"\"\""
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": null,
|
419 |
+
"id": "78abaf95-e52d-445c-9d8e-bc51efb20f06",
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [],
|
422 |
+
"source": [
|
423 |
+
"res = chat_engine.chat(prompt)\n",
|
424 |
+
"print(res.response)"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "code",
|
429 |
+
"execution_count": null,
|
430 |
+
"id": "1e62303c-3a00-448f-ad93-15cb6cee1f24",
|
431 |
+
"metadata": {},
|
432 |
+
"outputs": [],
|
433 |
+
"source": []
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": null,
|
438 |
+
"id": "dad72f9f-7f86-407d-93be-f5724cb30d5c",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"hi_engine = index.as_query_engine(\n",
|
443 |
+
" memory=memory,\n",
|
444 |
+
" system_prompt=system_content,\n",
|
445 |
+
" similarity_top_k=3,\n",
|
446 |
+
" streaming=True\n",
|
447 |
+
")"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"id": "ab778a5d-d438-4f39-88f5-c67a1f1d575e",
|
454 |
+
"metadata": {},
|
455 |
+
"outputs": [],
|
456 |
+
"source": []
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": null,
|
461 |
+
"id": "7bb7c21a-7461-40c1-87a7-4a1f92f70153",
|
462 |
+
"metadata": {},
|
463 |
+
"outputs": [],
|
464 |
+
"source": [
|
465 |
+
"res = hi_engine.query(\"may I know what is the rationale?\")\n",
|
466 |
+
"print(res)"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": null,
|
472 |
+
"id": "874a39ce-e682-42fa-8085-646bacea6cdb",
|
473 |
+
"metadata": {},
|
474 |
+
"outputs": [],
|
475 |
+
"source": []
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "code",
|
479 |
+
"execution_count": null,
|
480 |
+
"id": "301e8270-783d-4942-a05f-9683ca96fbda",
|
481 |
+
"metadata": {},
|
482 |
+
"outputs": [],
|
483 |
+
"source": []
|
484 |
+
}
|
485 |
+
],
|
486 |
+
"metadata": {
|
487 |
+
"kernelspec": {
|
488 |
+
"display_name": "Python 3 (ipykernel)",
|
489 |
+
"language": "python",
|
490 |
+
"name": "python3"
|
491 |
+
},
|
492 |
+
"language_info": {
|
493 |
+
"codemirror_mode": {
|
494 |
+
"name": "ipython",
|
495 |
+
"version": 3
|
496 |
+
},
|
497 |
+
"file_extension": ".py",
|
498 |
+
"mimetype": "text/x-python",
|
499 |
+
"name": "python",
|
500 |
+
"nbconvert_exporter": "python",
|
501 |
+
"pygments_lexer": "ipython3",
|
502 |
+
"version": "3.9.18"
|
503 |
+
}
|
504 |
+
},
|
505 |
+
"nbformat": 4,
|
506 |
+
"nbformat_minor": 5
|
507 |
+
}
|
notebooks/002_persisted-embedding-model.ipynb
CHANGED
@@ -271,7 +271,7 @@
|
|
271 |
"metadata": {},
|
272 |
"outputs": [],
|
273 |
"source": [
|
274 |
-
"llm = OpenAI(model=\"gpt-
|
275 |
]
|
276 |
},
|
277 |
{
|
@@ -391,7 +391,23 @@
|
|
391 |
"metadata": {},
|
392 |
"outputs": [],
|
393 |
"source": [
|
394 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
"print(res.response)"
|
396 |
]
|
397 |
},
|
@@ -413,7 +429,7 @@
|
|
413 |
"hi_engine = index.as_query_engine(\n",
|
414 |
" memory=memory,\n",
|
415 |
" system_prompt=system_content,\n",
|
416 |
-
" similarity_top_k=
|
417 |
" streaming=True\n",
|
418 |
")"
|
419 |
]
|
@@ -433,7 +449,7 @@
|
|
433 |
"metadata": {},
|
434 |
"outputs": [],
|
435 |
"source": [
|
436 |
-
"res = hi_engine.query(
|
437 |
"print(res)"
|
438 |
]
|
439 |
},
|
|
|
271 |
"metadata": {},
|
272 |
"outputs": [],
|
273 |
"source": [
|
274 |
+
"llm = OpenAI(model=\"gpt-4-0125-preview\", temperature=0.0)"
|
275 |
]
|
276 |
},
|
277 |
{
|
|
|
391 |
"metadata": {},
|
392 |
"outputs": [],
|
393 |
"source": [
|
394 |
+
"prompt = \"\"\"\n",
|
395 |
+
"Question: Which of the following is NOT a characteristic of medical expense insurance?\n",
|
396 |
+
"A. Pro ration factor and co-insurance.\n",
|
397 |
+
"B. Deductibles apply for all treatments.\n",
|
398 |
+
"C. Impose Sub- Limits.\n",
|
399 |
+
"D. Can be issued as a rider or stand-alone.\n",
|
400 |
+
"\"\"\""
|
401 |
+
]
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"execution_count": null,
|
406 |
+
"id": "9563515b-8a95-4dc8-a312-f57f9b59da86",
|
407 |
+
"metadata": {},
|
408 |
+
"outputs": [],
|
409 |
+
"source": [
|
410 |
+
"res = chat_engine.chat(prompt)\n",
|
411 |
"print(res.response)"
|
412 |
]
|
413 |
},
|
|
|
429 |
"hi_engine = index.as_query_engine(\n",
|
430 |
" memory=memory,\n",
|
431 |
" system_prompt=system_content,\n",
|
432 |
+
" similarity_top_k=10,\n",
|
433 |
" streaming=True\n",
|
434 |
")"
|
435 |
]
|
|
|
449 |
"metadata": {},
|
450 |
"outputs": [],
|
451 |
"source": [
|
452 |
+
"res = hi_engine.query(prompt)\n",
|
453 |
"print(res)"
|
454 |
]
|
455 |
},
|
raw_documents/answers.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d01aaa6a0000c46cf93b1572ad15464480260dbc8fa8dc718f4718a3ba7598
|
3 |
+
size 41317
|
raw_documents/conversation_examples.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd354c1b6691627a6598f124f76ef43d29a1c7108124d8d833180b8efbd207a4
|
3 |
+
size 47902
|
raw_documents/qna.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62f7746092d2d52d8028fb13471427e220aae0ab411771eda56883e9bfdc75ce
|
3 |
+
size 75976
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
aiohttp==3.9.1
|
2 |
aiosignal==1.3.1
|
3 |
alembic==1.13.1
|
@@ -28,6 +29,7 @@ charset-normalizer==3.3.2
|
|
28 |
chroma-hnswlib==0.7.3
|
29 |
chromadb==0.4.22
|
30 |
click==8.1.7
|
|
|
31 |
coloredlogs==15.0.1
|
32 |
comm==0.2.0
|
33 |
contourpy==1.2.0
|
@@ -45,6 +47,7 @@ exceptiongroup==1.2.0
|
|
45 |
executing==2.0.1
|
46 |
Faker==22.0.0
|
47 |
fastapi==0.109.0
|
|
|
48 |
fastjsonschema==2.19.1
|
49 |
favicon==0.7.0
|
50 |
filelock==3.13.1
|
@@ -58,6 +61,7 @@ gitdb==4.0.11
|
|
58 |
GitPython==3.1.40
|
59 |
google-auth==2.27.0
|
60 |
googleapis-common-protos==1.62.0
|
|
|
61 |
greenlet==3.0.3
|
62 |
grpcio==1.60.0
|
63 |
h11==0.14.0
|
@@ -101,19 +105,28 @@ langchain==0.0.354
|
|
101 |
langchain-community==0.0.8
|
102 |
langchain-core==0.1.23
|
103 |
langsmith==0.0.87
|
104 |
-
llama-index==0.10.
|
105 |
-
llama-index-agent-openai==0.1.
|
106 |
-
llama-index-
|
|
|
|
|
107 |
llama-index-embeddings-huggingface==0.1.1
|
108 |
-
llama-index-embeddings-openai==0.1.
|
|
|
|
|
109 |
llama-index-legacy==0.9.48
|
110 |
-
llama-index-llms-
|
111 |
-
llama-index-
|
|
|
112 |
llama-index-packs-auto-merging-retriever==0.1.2
|
113 |
-
llama-index-
|
114 |
-
llama-index-
|
115 |
-
llama-index-
|
|
|
|
|
116 |
llama-index-vector-stores-chroma==0.1.1
|
|
|
|
|
117 |
lxml==5.1.0
|
118 |
Mako==1.3.0
|
119 |
Markdown==3.5.1
|
@@ -176,7 +189,7 @@ pyarrow==14.0.2
|
|
176 |
pyasn1==0.5.1
|
177 |
pyasn1-modules==0.3.0
|
178 |
pycparser==2.21
|
179 |
-
pydantic==
|
180 |
pydantic_core==2.14.6
|
181 |
pydeck==0.8.1b0
|
182 |
Pygments==2.17.2
|
@@ -268,4 +281,4 @@ websockets==12.0
|
|
268 |
widgetsnbextension==4.0.9
|
269 |
wrapt==1.16.0
|
270 |
yarl==1.9.4
|
271 |
-
zipp==3.17.0
|
|
|
1 |
+
aenum==3.1.15
|
2 |
aiohttp==3.9.1
|
3 |
aiosignal==1.3.1
|
4 |
alembic==1.13.1
|
|
|
29 |
chroma-hnswlib==0.7.3
|
30 |
chromadb==0.4.22
|
31 |
click==8.1.7
|
32 |
+
cohere==4.49
|
33 |
coloredlogs==15.0.1
|
34 |
comm==0.2.0
|
35 |
contourpy==1.2.0
|
|
|
47 |
executing==2.0.1
|
48 |
Faker==22.0.0
|
49 |
fastapi==0.109.0
|
50 |
+
fastavro==1.9.1
|
51 |
fastjsonschema==2.19.1
|
52 |
favicon==0.7.0
|
53 |
filelock==3.13.1
|
|
|
61 |
GitPython==3.1.40
|
62 |
google-auth==2.27.0
|
63 |
googleapis-common-protos==1.62.0
|
64 |
+
gradientai==1.7.0
|
65 |
greenlet==3.0.3
|
66 |
grpcio==1.60.0
|
67 |
h11==0.14.0
|
|
|
105 |
langchain-community==0.0.8
|
106 |
langchain-core==0.1.23
|
107 |
langsmith==0.0.87
|
108 |
+
llama-index==0.10.12
|
109 |
+
llama-index-agent-openai==0.1.5
|
110 |
+
llama-index-cli==0.1.5
|
111 |
+
llama-index-core==0.10.12
|
112 |
+
llama-index-embeddings-adapter==0.1.3
|
113 |
llama-index-embeddings-huggingface==0.1.1
|
114 |
+
llama-index-embeddings-openai==0.1.6
|
115 |
+
llama-index-finetuning==0.1.4
|
116 |
+
llama-index-indices-managed-llama-cloud==0.1.3
|
117 |
llama-index-legacy==0.9.48
|
118 |
+
llama-index-llms-gradient==0.1.2
|
119 |
+
llama-index-llms-openai==0.1.6
|
120 |
+
llama-index-multi-modal-llms-openai==0.1.4
|
121 |
llama-index-packs-auto-merging-retriever==0.1.2
|
122 |
+
llama-index-postprocessor-cohere-rerank==0.1.2
|
123 |
+
llama-index-program-openai==0.1.4
|
124 |
+
llama-index-question-gen-openai==0.1.3
|
125 |
+
llama-index-readers-file==0.1.5
|
126 |
+
llama-index-readers-llama-parse==0.1.3
|
127 |
llama-index-vector-stores-chroma==0.1.1
|
128 |
+
llama-parse==0.3.4
|
129 |
+
llamaindex-py-client==0.1.13
|
130 |
lxml==5.1.0
|
131 |
Mako==1.3.0
|
132 |
Markdown==3.5.1
|
|
|
189 |
pyasn1==0.5.1
|
190 |
pyasn1-modules==0.3.0
|
191 |
pycparser==2.21
|
192 |
+
pydantic==1.10.14
|
193 |
pydantic_core==2.14.6
|
194 |
pydeck==0.8.1b0
|
195 |
Pygments==2.17.2
|
|
|
281 |
widgetsnbextension==4.0.9
|
282 |
wrapt==1.16.0
|
283 |
yarl==1.9.4
|
284 |
+
zipp==3.17.0
|
streamlit_app.py
CHANGED
@@ -7,6 +7,7 @@ import base64
|
|
7 |
from io import BytesIO
|
8 |
import sqlite3
|
9 |
import uuid
|
|
|
10 |
|
11 |
import chromadb
|
12 |
from llama_index.core import (
|
@@ -39,14 +40,14 @@ nest_asyncio.apply()
|
|
39 |
st.set_page_config(page_title="π»π Study Bear π―")
|
40 |
openai_api = os.getenv("OPENAI_API_KEY")
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
embedding_model = "
|
47 |
-
|
48 |
-
|
49 |
-
questionaire_db_path = "
|
50 |
|
51 |
data_df = pd.DataFrame(
|
52 |
{
|
@@ -109,6 +110,9 @@ if "init" not in st.session_state.keys():
|
|
109 |
st.session_state.init = {"warm_started": "No"}
|
110 |
st.session_state.feedback = False
|
111 |
|
|
|
|
|
|
|
112 |
# Store LLM generated responses
|
113 |
if "messages" not in st.session_state.keys():
|
114 |
st.session_state.messages = [{"role": "assistant",
|
@@ -341,19 +345,19 @@ if prompt := st.chat_input(disabled=not openai_api):
|
|
341 |
# Retrieve text prompt from image submission
|
342 |
if prompt is None and \
|
343 |
st.session_state.messages[-1]["role"] == "admin":
|
344 |
-
image_prompt = True
|
345 |
prompt = st.session_state.messages[-1]["content"]
|
346 |
|
347 |
# Generate a new response if last message is not from assistant
|
348 |
if st.session_state.messages[-1]["role"] != "assistant":
|
349 |
with st.chat_message("assistant", avatar=bear_img_path):
|
350 |
with st.spinner("π§Έπ€ Thinking... π»π"):
|
351 |
-
if image_prompt:
|
352 |
response = generate_llm_response(
|
353 |
prompt,
|
354 |
tool_choice="health_insurance_textbook_query_engine"
|
355 |
)
|
356 |
-
image_prompt = False
|
357 |
else:
|
358 |
response = generate_llm_response(prompt, tool_choice="auto")
|
359 |
placeholder = st.empty()
|
|
|
7 |
from io import BytesIO
|
8 |
import sqlite3
|
9 |
import uuid
|
10 |
+
import yaml
|
11 |
|
12 |
import chromadb
|
13 |
from llama_index.core import (
|
|
|
40 |
st.set_page_config(page_title="π»π Study Bear π―")
|
41 |
openai_api = os.getenv("OPENAI_API_KEY")
|
42 |
|
43 |
+
with open("./config/model_config.yml", "r") as file_reader:
|
44 |
+
model_config = yaml.safe_load(file_reader)
|
45 |
+
|
46 |
+
input_files = model_config["input_data"]["source"]
|
47 |
+
embedding_model = model_config["embeddings"]["embedding_base_model"]
|
48 |
+
fine_tuned_path = model_config["embeddings"]["fine_tuned_embedding_model"]
|
49 |
+
persisted_vector_db = model_config["vector_store"]["persisted_path"]
|
50 |
+
questionaire_db_path = model_config["questionaire_data"]["db_path"]
|
51 |
|
52 |
data_df = pd.DataFrame(
|
53 |
{
|
|
|
110 |
st.session_state.init = {"warm_started": "No"}
|
111 |
st.session_state.feedback = False
|
112 |
|
113 |
+
if "image_prompt" not in st.session_state.keys():
|
114 |
+
st.session_state.image_prompt = False
|
115 |
+
|
116 |
# Store LLM generated responses
|
117 |
if "messages" not in st.session_state.keys():
|
118 |
st.session_state.messages = [{"role": "assistant",
|
|
|
345 |
# Retrieve text prompt from image submission
|
346 |
if prompt is None and \
|
347 |
st.session_state.messages[-1]["role"] == "admin":
|
348 |
+
st.session_state.image_prompt = True
|
349 |
prompt = st.session_state.messages[-1]["content"]
|
350 |
|
351 |
# Generate a new response if last message is not from assistant
|
352 |
if st.session_state.messages[-1]["role"] != "assistant":
|
353 |
with st.chat_message("assistant", avatar=bear_img_path):
|
354 |
with st.spinner("π§Έπ€ Thinking... π»π"):
|
355 |
+
if st.session_state.image_prompt:
|
356 |
response = generate_llm_response(
|
357 |
prompt,
|
358 |
tool_choice="health_insurance_textbook_query_engine"
|
359 |
)
|
360 |
+
st.session_state.image_prompt = False
|
361 |
else:
|
362 |
response = generate_llm_response(prompt, tool_choice="auto")
|
363 |
placeholder = st.empty()
|
vision_api.py
CHANGED
@@ -9,6 +9,14 @@ def get_transcribed_text(base64_image):
|
|
9 |
"Content-Type": "application/json",
|
10 |
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
11 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
payload = {
|
14 |
"model": "gpt-4-vision-preview",
|
@@ -18,7 +26,7 @@ def get_transcribed_text(base64_image):
|
|
18 |
"content": [
|
19 |
{
|
20 |
"type": "text",
|
21 |
-
"text":
|
22 |
},
|
23 |
{
|
24 |
"type": "image_url",
|
|
|
9 |
"Content-Type": "application/json",
|
10 |
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
11 |
}
|
12 |
+
image_prompt = (
|
13 |
+
"Understand and interpret the image properly, there could be "
|
14 |
+
"handwritten notes or scribbles beside the electronic text. "
|
15 |
+
"Once you have sufficient understanding of the image, "
|
16 |
+
"transcribed them into text. If the content is a question, "
|
17 |
+
"convert the question into text."
|
18 |
+
)
|
19 |
+
print(image_prompt)
|
20 |
|
21 |
payload = {
|
22 |
"model": "gpt-4-vision-preview",
|
|
|
26 |
"content": [
|
27 |
{
|
28 |
"type": "text",
|
29 |
+
"text": image_prompt
|
30 |
},
|
31 |
{
|
32 |
"type": "image_url",
|