Spaces:
Sleeping
Sleeping
lingyit1108
commited on
Commit
Β·
ac8a60b
1
Parent(s):
bd54294
finishing QnA and functions calling plus pydantic
Browse files- notebooks/persisted-embedding-model.ipynb β archive/notebooks/002_persisted-embedding-model.ipynb +244 -21
- archive/notebooks/005_qna_prompting_with_pydantic_embeddings.ipynb +528 -0
- archive/requirements.txt +256 -0
- archive/streamlit_app/streamlit_app_14Feb2024.py +288 -0
- archive/{streamlit_app_archive.py β streamlit_app/streamlit_app_15Jan2024.py} +0 -0
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin +2 -2
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/header.bin +1 -1
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/index_metadata.pickle +3 -0
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin +2 -2
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/link_lists.bin +3 -0
- models/chroma_db/chroma.sqlite3 +2 -2
- notebooks/{fine-tuning-embedding-model.ipynb β 001_fine-tuning-embedding-model.ipynb} +0 -0
- notebooks/002_persisted-embedding-model.ipynb +476 -0
- notebooks/{create_mock_qna.ipynb β 003_create_mock_qna.ipynb} +0 -0
- notebooks/{qna_prompting_with_function_calling.ipynb β 004_qna_prompting_with_function_calling.ipynb} +26 -0
- notebooks/005_qna_prompting_with_pydantic_embeddings.ipynb +676 -0
- notebooks/{fine-tune-and-persist-vector-store.ipynb β 006_fine-tune-and-persist-vector-store.ipynb} +0 -0
- notebooks/qna_prompting_with_pydantic.ipynb +0 -114
- qna_prompting.py +73 -0
- requirements.txt +19 -5
- streamlit_app.py +74 -41
notebooks/persisted-embedding-model.ipynb β archive/notebooks/002_persisted-embedding-model.ipynb
RENAMED
@@ -8,14 +8,14 @@
|
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import openai\n",
|
11 |
-
"from llama_index import SimpleDirectoryReader\n",
|
12 |
-
"from llama_index import Document\n",
|
13 |
-
"from llama_index import VectorStoreIndex\n",
|
14 |
-
"from llama_index import ServiceContext\n",
|
15 |
-
"from llama_index.llms import OpenAI\n",
|
16 |
"\n",
|
17 |
-
"from llama_index.embeddings import HuggingFaceEmbedding\n",
|
18 |
-
"from llama_index import StorageContext, load_index_from_storage\n",
|
19 |
"\n",
|
20 |
"import time"
|
21 |
]
|
@@ -298,12 +298,123 @@
|
|
298 |
"outputs": [],
|
299 |
"source": []
|
300 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
{
|
302 |
"cell_type": "markdown",
|
303 |
"id": "8acae3ed-2953-45a3-aba9-0327b6ae3679",
|
304 |
"metadata": {},
|
305 |
"source": [
|
306 |
-
"### ChromaDB method - create vectorstore"
|
307 |
]
|
308 |
},
|
309 |
{
|
@@ -314,13 +425,19 @@
|
|
314 |
"outputs": [],
|
315 |
"source": [
|
316 |
"import chromadb\n",
|
317 |
-
"from llama_index import VectorStoreIndex, SimpleDirectoryReader\n",
|
318 |
-
"from llama_index.vector_stores import ChromaVectorStore\n",
|
319 |
-
"from llama_index.
|
320 |
-
"from llama_index import ServiceContext\n",
|
321 |
-
"from llama_index import Document\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
"\n",
|
323 |
-
"from llama_index.embeddings import HuggingFaceEmbedding\n",
|
324 |
"\n",
|
325 |
"import time"
|
326 |
]
|
@@ -333,7 +450,11 @@
|
|
333 |
"outputs": [],
|
334 |
"source": [
|
335 |
"# load some documents\n",
|
336 |
-
"documents = SimpleDirectoryReader(input_files=[\
|
|
|
|
|
|
|
|
|
337 |
"document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))"
|
338 |
]
|
339 |
},
|
@@ -385,19 +506,40 @@
|
|
385 |
"metadata": {},
|
386 |
"outputs": [],
|
387 |
"source": [
|
388 |
-
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
|
|
389 |
]
|
390 |
},
|
391 |
{
|
392 |
"cell_type": "code",
|
393 |
"execution_count": null,
|
394 |
-
"id": "
|
395 |
"metadata": {},
|
396 |
"outputs": [],
|
397 |
"source": [
|
398 |
-
"
|
|
|
|
|
399 |
]
|
400 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
{
|
402 |
"cell_type": "code",
|
403 |
"execution_count": null,
|
@@ -408,6 +550,24 @@
|
|
408 |
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
409 |
]
|
410 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
{
|
412 |
"cell_type": "code",
|
413 |
"execution_count": null,
|
@@ -418,6 +578,67 @@
|
|
418 |
"start_time = time.time()"
|
419 |
]
|
420 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
{
|
422 |
"cell_type": "code",
|
423 |
"execution_count": null,
|
@@ -426,6 +647,8 @@
|
|
426 |
"outputs": [],
|
427 |
"source": [
|
428 |
"# create your index\n",
|
|
|
|
|
429 |
"index = VectorStoreIndex.from_documents(\n",
|
430 |
" documents, service_context=service_context, storage_context=storage_context\n",
|
431 |
")"
|
@@ -471,7 +694,7 @@
|
|
471 |
"metadata": {},
|
472 |
"outputs": [],
|
473 |
"source": [
|
474 |
-
"r_list = retriever.retrieve(\"
|
475 |
]
|
476 |
},
|
477 |
{
|
@@ -493,7 +716,7 @@
|
|
493 |
"metadata": {},
|
494 |
"outputs": [],
|
495 |
"source": [
|
496 |
-
"response = query_engine.query(\"
|
497 |
]
|
498 |
},
|
499 |
{
|
@@ -519,7 +742,7 @@
|
|
519 |
"id": "a7fc01f6-4738-415b-a96b-afd6cf8d789a",
|
520 |
"metadata": {},
|
521 |
"source": [
|
522 |
-
"### ChromaDB method - load vectorstore"
|
523 |
]
|
524 |
},
|
525 |
{
|
|
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import openai\n",
|
11 |
+
"from llama_index.core import SimpleDirectoryReader\n",
|
12 |
+
"from llama_index.core import Document\n",
|
13 |
+
"from llama_index.core import VectorStoreIndex\n",
|
14 |
+
"from llama_index.core import ServiceContext\n",
|
15 |
+
"from llama_index.llms.openai import OpenAI\n",
|
16 |
"\n",
|
17 |
+
"from llama_index.legacy.embeddings import HuggingFaceEmbedding\n",
|
18 |
+
"from llama_index.core import StorageContext, load_index_from_storage\n",
|
19 |
"\n",
|
20 |
"import time"
|
21 |
]
|
|
|
298 |
"outputs": [],
|
299 |
"source": []
|
300 |
},
|
301 |
+
{
|
302 |
+
"cell_type": "markdown",
|
303 |
+
"id": "4730d2e7-dfa9-452d-ae20-95a24b6fd8bd",
|
304 |
+
"metadata": {},
|
305 |
+
"source": [
|
306 |
+
"### Create vectorstore based on default storage"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": null,
|
312 |
+
"id": "67e3e5ea-8b6d-4493-91ca-f0ced02971e1",
|
313 |
+
"metadata": {},
|
314 |
+
"outputs": [],
|
315 |
+
"source": [
|
316 |
+
"from llama_index.core import (\n",
|
317 |
+
" SimpleDirectoryReader,\n",
|
318 |
+
" VectorStoreIndex,\n",
|
319 |
+
" StorageContext,\n",
|
320 |
+
" load_index_from_storage,\n",
|
321 |
+
")\n",
|
322 |
+
"\n",
|
323 |
+
"from llama_index.core.tools import QueryEngineTool, ToolMetadata"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"execution_count": null,
|
329 |
+
"id": "d8d4ee04-37be-4014-8403-27ef467462b1",
|
330 |
+
"metadata": {},
|
331 |
+
"outputs": [],
|
332 |
+
"source": [
|
333 |
+
"documents = SimpleDirectoryReader(input_files=[\n",
|
334 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
335 |
+
" \"../raw_documents/qna.txt\"\n",
|
336 |
+
" ]).load_data()"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "code",
|
341 |
+
"execution_count": null,
|
342 |
+
"id": "d5f6a8b0-0798-42ab-9741-caf52a0bae0c",
|
343 |
+
"metadata": {},
|
344 |
+
"outputs": [],
|
345 |
+
"source": [
|
346 |
+
"hi_index = VectorStoreIndex.from_documents(documents)"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": null,
|
352 |
+
"id": "3e9f4da3-32af-4e1a-9b28-bfe2c51cc7e1",
|
353 |
+
"metadata": {},
|
354 |
+
"outputs": [],
|
355 |
+
"source": [
|
356 |
+
"hi_index.storage_context.persist(persist_dir=\"../models/default_storage\")"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"execution_count": null,
|
362 |
+
"id": "6f032e21-7f98-4752-ad55-3607fd40b7d5",
|
363 |
+
"metadata": {},
|
364 |
+
"outputs": [],
|
365 |
+
"source": [
|
366 |
+
"hi_engine = hi_index.as_query_engine(similarity_top_k=3)"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": null,
|
372 |
+
"id": "3c599039-8cdf-449c-b3d8-f0d41bffdffc",
|
373 |
+
"metadata": {},
|
374 |
+
"outputs": [],
|
375 |
+
"source": [
|
376 |
+
"response = hi_engine.query(\"what is the healthcare philosophy in singapore\")\n",
|
377 |
+
"response"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"execution_count": null,
|
383 |
+
"id": "0757962c-235b-49b7-a92d-49c474b79731",
|
384 |
+
"metadata": {},
|
385 |
+
"outputs": [],
|
386 |
+
"source": []
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": null,
|
391 |
+
"id": "b77caa5b-16eb-48ec-8f74-0fc6ca03efbd",
|
392 |
+
"metadata": {},
|
393 |
+
"outputs": [],
|
394 |
+
"source": []
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": null,
|
399 |
+
"id": "f0c97e94-5dc5-443e-94a2-ce28aad99a3c",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": []
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "c19cc1b2-4669-4019-9fea-8e8aa3c74c6f",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": []
|
411 |
+
},
|
412 |
{
|
413 |
"cell_type": "markdown",
|
414 |
"id": "8acae3ed-2953-45a3-aba9-0327b6ae3679",
|
415 |
"metadata": {},
|
416 |
"source": [
|
417 |
+
"### ChromaDB method - create vectorstore based on Chroma"
|
418 |
]
|
419 |
},
|
420 |
{
|
|
|
425 |
"outputs": [],
|
426 |
"source": [
|
427 |
"import chromadb\n",
|
428 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
429 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
430 |
+
"from llama_index.core import StorageContext\n",
|
431 |
+
"from llama_index.core import ServiceContext\n",
|
432 |
+
"from llama_index.core import Document\n",
|
433 |
+
"\n",
|
434 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
435 |
+
"from llama_index.core import Settings\n",
|
436 |
+
"\n",
|
437 |
+
"import nest_asyncio\n",
|
438 |
+
"\n",
|
439 |
+
"nest_asyncio.apply()\n",
|
440 |
"\n",
|
|
|
441 |
"\n",
|
442 |
"import time"
|
443 |
]
|
|
|
450 |
"outputs": [],
|
451 |
"source": [
|
452 |
"# load some documents\n",
|
453 |
+
"documents = SimpleDirectoryReader(input_files=[\n",
|
454 |
+
" \"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
455 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
456 |
+
" \"../raw_documents/qna.txt\"\n",
|
457 |
+
" ]).load_data()\n",
|
458 |
"document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))"
|
459 |
]
|
460 |
},
|
|
|
506 |
"metadata": {},
|
507 |
"outputs": [],
|
508 |
"source": [
|
509 |
+
"# embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
|
510 |
+
"# embed_model = HuggingFaceEmbedding(model_name=\"local:../models/fine-tuned-embeddings\")"
|
511 |
]
|
512 |
},
|
513 |
{
|
514 |
"cell_type": "code",
|
515 |
"execution_count": null,
|
516 |
+
"id": "0946b6ce-96ab-44de-ad75-e424a8429f67",
|
517 |
"metadata": {},
|
518 |
"outputs": [],
|
519 |
"source": [
|
520 |
+
"Settings.llm = None\n",
|
521 |
+
"Settings.chunk_size = 1024\n",
|
522 |
+
"Settings.embed_model = \"local:../models/fine-tuned-embeddings\""
|
523 |
]
|
524 |
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": null,
|
528 |
+
"id": "b8c73a2c-1129-406a-8046-085afcaf9cbb",
|
529 |
+
"metadata": {},
|
530 |
+
"outputs": [],
|
531 |
+
"source": [
|
532 |
+
"nodes = Settings.node_parser.get_nodes_from_documents(documents)"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"cell_type": "code",
|
537 |
+
"execution_count": null,
|
538 |
+
"id": "adfe688f-95c0-477c-a9de-e9e77541a1d7",
|
539 |
+
"metadata": {},
|
540 |
+
"outputs": [],
|
541 |
+
"source": []
|
542 |
+
},
|
543 |
{
|
544 |
"cell_type": "code",
|
545 |
"execution_count": null,
|
|
|
550 |
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
551 |
]
|
552 |
},
|
553 |
+
{
|
554 |
+
"cell_type": "code",
|
555 |
+
"execution_count": null,
|
556 |
+
"id": "6a764113-ad7e-4674-aa57-ebbf405902a8",
|
557 |
+
"metadata": {},
|
558 |
+
"outputs": [],
|
559 |
+
"source": [
|
560 |
+
"storage_context.docstore.add_documents(nodes)"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": null,
|
566 |
+
"id": "38e7c88d-6c45-4275-8293-d09b4b85a7cf",
|
567 |
+
"metadata": {},
|
568 |
+
"outputs": [],
|
569 |
+
"source": []
|
570 |
+
},
|
571 |
{
|
572 |
"cell_type": "code",
|
573 |
"execution_count": null,
|
|
|
578 |
"start_time = time.time()"
|
579 |
]
|
580 |
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": null,
|
584 |
+
"id": "cbd11b89-9b83-4f08-bb30-160f750f2ffb",
|
585 |
+
"metadata": {},
|
586 |
+
"outputs": [],
|
587 |
+
"source": [
|
588 |
+
"vector_index = VectorStoreIndex(nodes, storage_context=storage_context)"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "code",
|
593 |
+
"execution_count": null,
|
594 |
+
"id": "082a0d7e-b025-4db1-be2a-7a0b7bc453b9",
|
595 |
+
"metadata": {},
|
596 |
+
"outputs": [],
|
597 |
+
"source": [
|
598 |
+
"vector_query_engine = vector_index.as_query_engine()"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": null,
|
604 |
+
"id": "d3bd848d-9985-4a3d-bdc4-ec340cc69ef3",
|
605 |
+
"metadata": {},
|
606 |
+
"outputs": [],
|
607 |
+
"source": [
|
608 |
+
"indexing_cost = time.time() - start_time\n",
|
609 |
+
"indexing_cost = indexing_cost / 60\n",
|
610 |
+
"print(f\"Indexing time: {indexing_cost:.1f} mins\")"
|
611 |
+
]
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"cell_type": "code",
|
615 |
+
"execution_count": null,
|
616 |
+
"id": "3290e870-41d7-49c4-9c4f-cb16bd1f469e",
|
617 |
+
"metadata": {},
|
618 |
+
"outputs": [],
|
619 |
+
"source": [
|
620 |
+
"response = vector_query_engine.query(\"what is the healthcare philosophy in singapore\")\n",
|
621 |
+
"response"
|
622 |
+
]
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"cell_type": "code",
|
626 |
+
"execution_count": null,
|
627 |
+
"id": "131d907a-0677-4ad8-b3f7-6fc9b9c5d0a5",
|
628 |
+
"metadata": {},
|
629 |
+
"outputs": [],
|
630 |
+
"source": []
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"id": "f95e42ff-374b-4c57-8333-137a6205a6ad",
|
636 |
+
"metadata": {},
|
637 |
+
"outputs": [],
|
638 |
+
"source": [
|
639 |
+
"start_time = time.time()"
|
640 |
+
]
|
641 |
+
},
|
642 |
{
|
643 |
"cell_type": "code",
|
644 |
"execution_count": null,
|
|
|
647 |
"outputs": [],
|
648 |
"source": [
|
649 |
"# create your index\n",
|
650 |
+
"service_context = ServiceContext.from_defaults(llm=None, embed_model=\"local:../models/fine-tuned-embeddings\")\n",
|
651 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
|
652 |
"index = VectorStoreIndex.from_documents(\n",
|
653 |
" documents, service_context=service_context, storage_context=storage_context\n",
|
654 |
")"
|
|
|
694 |
"metadata": {},
|
695 |
"outputs": [],
|
696 |
"source": [
|
697 |
+
"r_list = retriever.retrieve(\"what is the healthcare philosophy in singapore\")"
|
698 |
]
|
699 |
},
|
700 |
{
|
|
|
716 |
"metadata": {},
|
717 |
"outputs": [],
|
718 |
"source": [
|
719 |
+
"response = query_engine.query(\"what is the healthcare philosophy in singapore\")"
|
720 |
]
|
721 |
},
|
722 |
{
|
|
|
742 |
"id": "a7fc01f6-4738-415b-a96b-afd6cf8d789a",
|
743 |
"metadata": {},
|
744 |
"source": [
|
745 |
+
"### ChromaDB method - load vectorstore based on Chroma"
|
746 |
]
|
747 |
},
|
748 |
{
|
archive/notebooks/005_qna_prompting_with_pydantic_embeddings.ipynb
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "4cf3ca7c-2c43-495b-a1ee-24c770f0ad1e",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Simple OpenAI agent with tool"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "a9d74b11-4049-4e3c-839e-7d13d7c0dadc",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import json\n",
|
19 |
+
"from typing import Sequence, List\n",
|
20 |
+
"from pydantic import BaseModel\n",
|
21 |
+
"\n",
|
22 |
+
"from llama_index.core.llms import ChatMessage\n",
|
23 |
+
"from llama_index.core.tools import BaseTool, FunctionTool\n",
|
24 |
+
"from llama_index.llms.openai import OpenAI\n",
|
25 |
+
"from llama_index.agent.openai import OpenAIAgent\n",
|
26 |
+
"\n",
|
27 |
+
"import nest_asyncio\n",
|
28 |
+
"\n",
|
29 |
+
"nest_asyncio.apply()"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"id": "39ca840b-0ec7-4279-9654-e4ddfda6137f",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"# define sample Tool\n",
|
40 |
+
"def multiply(a: int, b: int) -> int:\n",
|
41 |
+
" \"\"\"Multiply two integers and returns the result integer\"\"\"\n",
|
42 |
+
" return a * b\n",
|
43 |
+
"\n",
|
44 |
+
"multiply_tool = FunctionTool.from_defaults(fn=multiply)\n",
|
45 |
+
"\n",
|
46 |
+
"def add(a: int, b: int) -> int:\n",
|
47 |
+
" \"\"\"Add two integers and returns the result integer\"\"\"\n",
|
48 |
+
" return a + b\n",
|
49 |
+
"\n",
|
50 |
+
"add_tool = FunctionTool.from_defaults(fn=add)\n",
|
51 |
+
"\n",
|
52 |
+
"class Song(BaseModel):\n",
|
53 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
54 |
+
"\n",
|
55 |
+
" name: str\n",
|
56 |
+
" artist: str\n",
|
57 |
+
"\n",
|
58 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "4df3e9f2-4a32-4449-b203-929dff9e7963",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": []
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"id": "bbeeea36-0bb0-4edb-9b8c-adb7c64c4cd3",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"# initialize openai agent\n",
|
77 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-0613\")\n",
|
78 |
+
"agent = OpenAIAgent.from_tools([multiply_tool, add_tool, song_fn], llm=llm, verbose=True)"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"id": "65158ede-b99f-477d-9d17-3be40e57a629",
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"res = agent.chat(message=\"3 x 2 equals?\")\n",
|
89 |
+
"res"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"id": "d74b0e5c-47a2-4de4-acd2-d39a94941f2d",
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": []
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"id": "d9787ed4-46a2-46aa-80e6-b317d9280b9e",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"res = agent.chat(message=\"3 plus 2 equals?\")\n",
|
108 |
+
"res"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": null,
|
114 |
+
"id": "dd3358c6-e0e4-4354-8a4e-97d70254f648",
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": []
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": null,
|
122 |
+
"id": "16e1db2c-dca3-4dc6-9cc5-c10644d5927c",
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"res = agent.chat(message=\"give me the lyrics of taylor swift's `you belong with me`\")\n",
|
127 |
+
"res"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"id": "97a021f4-4701-4914-9ab8-0683b396f096",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": []
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": null,
|
141 |
+
"id": "1f0b352d-8510-4b2a-a495-9f2e1fbfcddb",
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"# res_stream = agent.stream_chat(message=\"3 x 2 equals?\")\n",
|
146 |
+
"# for r in res_stream.response_gen:\n",
|
147 |
+
"# print(r, end=\"\")"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"id": "ea0a6cd4-f204-4997-bdfb-cb9b5a9e1266",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": []
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "markdown",
|
160 |
+
"id": "96c978e6-62e2-46e6-ae63-76841487f618",
|
161 |
+
"metadata": {},
|
162 |
+
"source": [
|
163 |
+
"### OpenAI agent with embeddings, and function calling"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"id": "6f0f5f02-c8e9-43a9-853d-12bb3c19dbe8",
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [],
|
172 |
+
"source": [
|
173 |
+
"import os\n",
|
174 |
+
"import chromadb\n",
|
175 |
+
"\n",
|
176 |
+
"from llama_index.core import (\n",
|
177 |
+
" SimpleDirectoryReader,\n",
|
178 |
+
" VectorStoreIndex,\n",
|
179 |
+
" ServiceContext,\n",
|
180 |
+
" StorageContext,\n",
|
181 |
+
" load_index_from_storage,\n",
|
182 |
+
")\n",
|
183 |
+
"from llama_index.core.memory import ChatMemoryBuffer\n",
|
184 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
185 |
+
"from llama_index.core.tools import QueryEngineTool, ToolMetadata\n",
|
186 |
+
"from llama_index.llms.openai import OpenAI\n",
|
187 |
+
"from llama_index.agent.openai import OpenAIAgent\n",
|
188 |
+
"from llama_index.core.tools import BaseTool, FunctionTool\n",
|
189 |
+
"from llama_index.core import Settings\n",
|
190 |
+
"\n",
|
191 |
+
"from pydantic import BaseModel\n",
|
192 |
+
"import nest_asyncio\n",
|
193 |
+
"\n",
|
194 |
+
"nest_asyncio.apply()"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"id": "54855aa4-dcad-404e-843f-c96d61046df3",
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [],
|
203 |
+
"source": []
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "markdown",
|
207 |
+
"id": "4edb89f6-bb2f-46ff-8807-dfb03115fcd5",
|
208 |
+
"metadata": {},
|
209 |
+
"source": [
|
210 |
+
"#### Parameters"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"id": "61ad7369-8fd4-434f-b687-0c649940bda1",
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [],
|
219 |
+
"source": [
|
220 |
+
"selected_model = \"gpt-3.5-turbo-1106\"\n",
|
221 |
+
"temperature = 0.0\n",
|
222 |
+
"\n",
|
223 |
+
"persisted_vector_db = \"../models/chroma_db\"\n",
|
224 |
+
"input_files = [\"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
225 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
226 |
+
" \"../raw_documents/qna.txt\"]\n",
|
227 |
+
"fine_tuned_path = \"local:../models/fine-tuned-embeddings\"\n",
|
228 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
229 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
230 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
231 |
+
")"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"execution_count": null,
|
237 |
+
"id": "a18117f5-48a7-4e81-9b46-541f382caf9e",
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [],
|
240 |
+
"source": []
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "markdown",
|
244 |
+
"id": "3210c837-9b40-4cd9-bb00-ead559deff6f",
|
245 |
+
"metadata": {},
|
246 |
+
"source": [
|
247 |
+
"#### Load vector store"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"id": "b9dfba0c-f27d-49d1-86c5-a1d95c11b844",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [],
|
256 |
+
"source": [
|
257 |
+
"if os.path.exists(persisted_vector_db):\n",
|
258 |
+
" db = chromadb.PersistentClient(path=persisted_vector_db)\n",
|
259 |
+
" chroma_collection = db.get_or_create_collection(\"quickstart\")\n",
|
260 |
+
" \n",
|
261 |
+
" # assign chroma as the vector_store to the context\n",
|
262 |
+
" vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
263 |
+
" storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
|
264 |
+
"\n",
|
265 |
+
"else:\n",
|
266 |
+
" documents = SimpleDirectoryReader(input_files=input_files).load_data()\n",
|
267 |
+
" document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))\n",
|
268 |
+
" \n",
|
269 |
+
" # initialize client, setting path to save data\n",
|
270 |
+
" db = chromadb.PersistentClient(path=persisted_vector_db)\n",
|
271 |
+
" \n",
|
272 |
+
" # create collection\n",
|
273 |
+
" chroma_collection = db.get_or_create_collection(\"quickstart\")\n",
|
274 |
+
"\n",
|
275 |
+
" # assign chroma as the vector_store to the context\n",
|
276 |
+
" vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
277 |
+
" storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": null,
|
283 |
+
"id": "693c9808-efbe-47a6-a49c-7143c63d13e5",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": []
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"id": "c6bfae0b-7c97-4c2b-9996-f5e3ecf7a992",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"# define sample Tool\n",
|
296 |
+
"def multiply(a: int, b: int) -> int:\n",
|
297 |
+
" \"\"\"Multiply two integers and returns the result integer\"\"\"\n",
|
298 |
+
" return a * b\n",
|
299 |
+
"\n",
|
300 |
+
"def add(a: int, b: int) -> int:\n",
|
301 |
+
" \"\"\"Add two integers and returns the result integer\"\"\"\n",
|
302 |
+
" return a + b\n",
|
303 |
+
"\n",
|
304 |
+
"class Song(BaseModel):\n",
|
305 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
306 |
+
"\n",
|
307 |
+
" name: str\n",
|
308 |
+
" artist: str\n",
|
309 |
+
"\n",
|
310 |
+
"add_tool = FunctionTool.from_defaults(fn=add)\n",
|
311 |
+
"multiply_tool = FunctionTool.from_defaults(fn=multiply)\n",
|
312 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": null,
|
318 |
+
"id": "16a80b2e-8e5f-462a-8616-042afe18be3a",
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [],
|
321 |
+
"source": [
|
322 |
+
"llm = OpenAI(model=selected_model, temperature=temperature)\n",
|
323 |
+
"service_context = ServiceContext.from_defaults(llm=llm, embed_model=fine_tuned_path)\n",
|
324 |
+
"\n",
|
325 |
+
"Settings.llm = llm\n",
|
326 |
+
"Settings.embed_model = fine_tuned_path"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"execution_count": null,
|
332 |
+
"id": "95d3a420-1ee4-45bd-a18b-b398d9531db4",
|
333 |
+
"metadata": {},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"# index = VectorStoreIndex.from_vector_store(\n",
|
337 |
+
"# vector_store=vector_store,\n",
|
338 |
+
"# service_context=service_context, \n",
|
339 |
+
"# storage_context=storage_context\n",
|
340 |
+
"# )\n",
|
341 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
342 |
+
" vector_store=vector_store,\n",
|
343 |
+
" storage_context=storage_context\n",
|
344 |
+
")"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": null,
|
350 |
+
"id": "eac6d76d-059b-40e3-b67f-c736f1ce6baa",
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
355 |
+
"\n",
|
356 |
+
"hi_engine = index.as_query_engine(\n",
|
357 |
+
" memory=memory,\n",
|
358 |
+
" system_prompt=system_content,\n",
|
359 |
+
" similarity_top_k=3,\n",
|
360 |
+
" streaming=True\n",
|
361 |
+
")"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": null,
|
367 |
+
"id": "18e38a8f-9b51-4675-a1d5-8aaa6c21694c",
|
368 |
+
"metadata": {},
|
369 |
+
"outputs": [],
|
370 |
+
"source": [
|
371 |
+
"res = hi_engine.query(\"what is the healthcare philosophy in singapore\")\n",
|
372 |
+
"print(res)"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": null,
|
378 |
+
"id": "70dae6f7-682e-42d6-be59-3b807c10482c",
|
379 |
+
"metadata": {},
|
380 |
+
"outputs": [],
|
381 |
+
"source": []
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "code",
|
385 |
+
"execution_count": null,
|
386 |
+
"id": "1eb5df65-c926-4b22-8071-449d645b339f",
|
387 |
+
"metadata": {},
|
388 |
+
"outputs": [],
|
389 |
+
"source": [
|
390 |
+
"hi_query_tool = QueryEngineTool.from_defaults(\n",
|
391 |
+
" query_engine=hi_engine,\n",
|
392 |
+
" name=\"vector_tool\",\n",
|
393 |
+
" description=(\n",
|
394 |
+
" \"Provides information about Health Insurance landscape in Singapore. \"\n",
|
395 |
+
" \"Use a detailed plain text question as input to the tool.\"\n",
|
396 |
+
" )\n",
|
397 |
+
")\n",
|
398 |
+
"\n",
|
399 |
+
"# hi_query_tool = QueryEngineTool(\n",
|
400 |
+
"# query_engine=hi_engine,\n",
|
401 |
+
"# metadata=ToolMetadata(\n",
|
402 |
+
"# name=\"health_insurance_mentor\",\n",
|
403 |
+
"# description=(\n",
|
404 |
+
"# \"Provides information about Health Insurance landscape in Singapore. \"\n",
|
405 |
+
"# \"Use a detailed plain text question as input to the tool.\"\n",
|
406 |
+
"# )\n",
|
407 |
+
"# )\n",
|
408 |
+
"# )"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": null,
|
414 |
+
"id": "a5822b1d-32ef-4b68-8629-a727ff51cd0a",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [],
|
417 |
+
"source": []
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": null,
|
422 |
+
"id": "2a1235da-a379-4055-8bcf-4b21c91c9fb0",
|
423 |
+
"metadata": {},
|
424 |
+
"outputs": [],
|
425 |
+
"source": [
|
426 |
+
"agent = OpenAIAgent.from_tools([multiply_tool, add_tool, hi_query_tool], llm=llm, verbose=True)"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": null,
|
432 |
+
"id": "05b65cbd-d15c-4909-b383-50b13f64e535",
|
433 |
+
"metadata": {},
|
434 |
+
"outputs": [],
|
435 |
+
"source": []
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"cell_type": "code",
|
439 |
+
"execution_count": null,
|
440 |
+
"id": "63332a44-9441-4f49-85a2-934e2c55a362",
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [],
|
443 |
+
"source": [
|
444 |
+
"res = agent.chat(\"what is the healthcare philosophy in singapore\", tool_choice=\"auto\")\n",
|
445 |
+
"res.response"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "code",
|
450 |
+
"execution_count": null,
|
451 |
+
"id": "81709cbf-9a5e-482f-ae6a-ba361b8219dc",
|
452 |
+
"metadata": {},
|
453 |
+
"outputs": [],
|
454 |
+
"source": []
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": null,
|
459 |
+
"id": "adf26268-e40a-4ebd-a737-6b203ddc4444",
|
460 |
+
"metadata": {},
|
461 |
+
"outputs": [],
|
462 |
+
"source": [
|
463 |
+
"res = agent.stream_chat(\"what is the healthcare philosophy in singapore\", tool_choice=\"auto\")\n",
|
464 |
+
"for r in res.response_gen:\n",
|
465 |
+
" print(r, end=\"\")"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"cell_type": "code",
|
470 |
+
"execution_count": null,
|
471 |
+
"id": "540c0f71-048a-4a64-9818-e2b1cffc0db7",
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [],
|
474 |
+
"source": []
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": null,
|
479 |
+
"id": "fbeabf28-30f9-4d7f-a4b9-21cd08a9b128",
|
480 |
+
"metadata": {},
|
481 |
+
"outputs": [],
|
482 |
+
"source": [
|
483 |
+
"res = agent.stream_chat(\"what is the result of 328123 + 2891230\", tool_choice=\"auto\")\n",
|
484 |
+
"for r in res.response_gen:\n",
|
485 |
+
" print(r, end=\"\")"
|
486 |
+
]
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"cell_type": "code",
|
490 |
+
"execution_count": null,
|
491 |
+
"id": "19b7e12c-0729-4181-acce-53a3a95b67b8",
|
492 |
+
"metadata": {},
|
493 |
+
"outputs": [],
|
494 |
+
"source": [
|
495 |
+
"328123 + 2891230"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "code",
|
500 |
+
"execution_count": null,
|
501 |
+
"id": "bca4c0b2-5165-4943-af1f-d3168ee88fcd",
|
502 |
+
"metadata": {},
|
503 |
+
"outputs": [],
|
504 |
+
"source": []
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"metadata": {
|
508 |
+
"kernelspec": {
|
509 |
+
"display_name": "Python 3 (ipykernel)",
|
510 |
+
"language": "python",
|
511 |
+
"name": "python3"
|
512 |
+
},
|
513 |
+
"language_info": {
|
514 |
+
"codemirror_mode": {
|
515 |
+
"name": "ipython",
|
516 |
+
"version": 3
|
517 |
+
},
|
518 |
+
"file_extension": ".py",
|
519 |
+
"mimetype": "text/x-python",
|
520 |
+
"name": "python",
|
521 |
+
"nbconvert_exporter": "python",
|
522 |
+
"pygments_lexer": "ipython3",
|
523 |
+
"version": "3.9.18"
|
524 |
+
}
|
525 |
+
},
|
526 |
+
"nbformat": 4,
|
527 |
+
"nbformat_minor": 5
|
528 |
+
}
|
archive/requirements.txt
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.1
|
2 |
+
aiosignal==1.3.1
|
3 |
+
alembic==1.13.1
|
4 |
+
altair==5.2.0
|
5 |
+
annotated-types==0.6.0
|
6 |
+
anyio==4.2.0
|
7 |
+
appnope==0.1.3
|
8 |
+
argon2-cffi==23.1.0
|
9 |
+
argon2-cffi-bindings==21.2.0
|
10 |
+
arrow==1.3.0
|
11 |
+
asgiref==3.7.2
|
12 |
+
asttokens==2.4.1
|
13 |
+
async-lru==2.0.4
|
14 |
+
async-timeout==4.0.3
|
15 |
+
attrs==23.2.0
|
16 |
+
Babel==2.14.0
|
17 |
+
backoff==2.2.1
|
18 |
+
bcrypt==4.1.2
|
19 |
+
beautifulsoup4==4.12.3
|
20 |
+
bleach==6.1.0
|
21 |
+
blinker==1.7.0
|
22 |
+
bs4==0.0.2
|
23 |
+
build==1.0.3
|
24 |
+
cachetools==5.3.2
|
25 |
+
certifi==2023.11.17
|
26 |
+
cffi==1.16.0
|
27 |
+
charset-normalizer==3.3.2
|
28 |
+
chroma-hnswlib==0.7.3
|
29 |
+
chromadb==0.4.22
|
30 |
+
click==8.1.7
|
31 |
+
coloredlogs==15.0.1
|
32 |
+
comm==0.2.0
|
33 |
+
contourpy==1.2.0
|
34 |
+
cycler==0.12.1
|
35 |
+
dataclasses-json==0.6.3
|
36 |
+
debugpy==1.8.0
|
37 |
+
decorator==5.1.1
|
38 |
+
defusedxml==0.7.1
|
39 |
+
Deprecated==1.2.14
|
40 |
+
dill==0.3.7
|
41 |
+
dirtyjson==1.0.8
|
42 |
+
distro==1.9.0
|
43 |
+
entrypoints==0.4
|
44 |
+
exceptiongroup==1.2.0
|
45 |
+
executing==2.0.1
|
46 |
+
Faker==22.0.0
|
47 |
+
fastapi==0.109.0
|
48 |
+
fastjsonschema==2.19.1
|
49 |
+
favicon==0.7.0
|
50 |
+
filelock==3.13.1
|
51 |
+
flatbuffers==23.5.26
|
52 |
+
fonttools==4.47.0
|
53 |
+
fqdn==1.5.1
|
54 |
+
frozendict==2.4.0
|
55 |
+
frozenlist==1.4.1
|
56 |
+
fsspec==2023.12.2
|
57 |
+
gitdb==4.0.11
|
58 |
+
GitPython==3.1.40
|
59 |
+
google-auth==2.27.0
|
60 |
+
googleapis-common-protos==1.62.0
|
61 |
+
greenlet==3.0.3
|
62 |
+
grpcio==1.60.0
|
63 |
+
h11==0.14.0
|
64 |
+
htbuilder==0.6.2
|
65 |
+
httpcore==1.0.2
|
66 |
+
httptools==0.6.1
|
67 |
+
httpx==0.26.0
|
68 |
+
huggingface-hub==0.20.1
|
69 |
+
humanfriendly==10.0
|
70 |
+
humanize==4.9.0
|
71 |
+
idna==3.6
|
72 |
+
importlib-metadata==6.11.0
|
73 |
+
importlib-resources==6.1.1
|
74 |
+
ipykernel==6.28.0
|
75 |
+
ipython==8.18.1
|
76 |
+
ipywidgets==8.1.1
|
77 |
+
isoduration==20.11.0
|
78 |
+
jedi==0.19.1
|
79 |
+
Jinja2==3.1.2
|
80 |
+
joblib==1.3.2
|
81 |
+
json5==0.9.14
|
82 |
+
jsonpatch==1.33
|
83 |
+
jsonpointer==2.4
|
84 |
+
jsonschema==4.20.0
|
85 |
+
jsonschema-specifications==2023.12.1
|
86 |
+
jupyter==1.0.0
|
87 |
+
jupyter-console==6.6.3
|
88 |
+
jupyter-events==0.9.0
|
89 |
+
jupyter-lsp==2.2.1
|
90 |
+
jupyter_client==8.6.0
|
91 |
+
jupyter_core==5.6.1
|
92 |
+
jupyter_server==2.12.1
|
93 |
+
jupyter_server_terminals==0.5.1
|
94 |
+
jupyterlab==4.0.10
|
95 |
+
jupyterlab-widgets==3.0.9
|
96 |
+
jupyterlab_pygments==0.3.0
|
97 |
+
jupyterlab_server==2.25.2
|
98 |
+
kiwisolver==1.4.5
|
99 |
+
kubernetes==29.0.0
|
100 |
+
langchain==0.0.354
|
101 |
+
langchain-community==0.0.8
|
102 |
+
langchain-core==0.1.5
|
103 |
+
langsmith==0.0.77
|
104 |
+
llama-index==0.9.39
|
105 |
+
Mako==1.3.0
|
106 |
+
Markdown==3.5.1
|
107 |
+
markdown-it-py==3.0.0
|
108 |
+
markdownlit==0.0.7
|
109 |
+
MarkupSafe==2.1.3
|
110 |
+
marshmallow==3.20.1
|
111 |
+
matplotlib==3.8.2
|
112 |
+
matplotlib-inline==0.1.6
|
113 |
+
mdurl==0.1.2
|
114 |
+
merkle-json==1.0.0
|
115 |
+
millify==0.1.1
|
116 |
+
mistune==3.0.2
|
117 |
+
mmh3==4.1.0
|
118 |
+
monotonic==1.6
|
119 |
+
more-itertools==10.1.0
|
120 |
+
mpmath==1.3.0
|
121 |
+
multidict==6.0.4
|
122 |
+
munch==4.0.0
|
123 |
+
mypy-extensions==1.0.0
|
124 |
+
nbclient==0.9.0
|
125 |
+
nbconvert==7.14.0
|
126 |
+
nbformat==5.9.2
|
127 |
+
nest-asyncio==1.5.8
|
128 |
+
networkx==3.2.1
|
129 |
+
nltk==3.8.1
|
130 |
+
notebook==7.0.6
|
131 |
+
notebook_shim==0.2.3
|
132 |
+
numpy==1.26.2
|
133 |
+
oauthlib==3.2.2
|
134 |
+
onnxruntime==1.16.3
|
135 |
+
openai==1.6.1
|
136 |
+
opentelemetry-api==1.22.0
|
137 |
+
opentelemetry-exporter-otlp-proto-common==1.22.0
|
138 |
+
opentelemetry-exporter-otlp-proto-grpc==1.22.0
|
139 |
+
opentelemetry-instrumentation==0.43b0
|
140 |
+
opentelemetry-instrumentation-asgi==0.43b0
|
141 |
+
opentelemetry-instrumentation-fastapi==0.43b0
|
142 |
+
opentelemetry-proto==1.22.0
|
143 |
+
opentelemetry-sdk==1.22.0
|
144 |
+
opentelemetry-semantic-conventions==0.43b0
|
145 |
+
opentelemetry-util-http==0.43b0
|
146 |
+
overrides==7.4.0
|
147 |
+
packaging==23.2
|
148 |
+
pandas==2.1.4
|
149 |
+
pandocfilters==1.5.0
|
150 |
+
parso==0.8.3
|
151 |
+
pexpect==4.9.0
|
152 |
+
pillow==10.2.0
|
153 |
+
platformdirs==4.1.0
|
154 |
+
posthog==3.3.3
|
155 |
+
prometheus-client==0.19.0
|
156 |
+
prompt-toolkit==3.0.43
|
157 |
+
protobuf==4.25.1
|
158 |
+
psutil==5.9.7
|
159 |
+
ptyprocess==0.7.0
|
160 |
+
pulsar-client==3.4.0
|
161 |
+
pure-eval==0.2.2
|
162 |
+
pyarrow==14.0.2
|
163 |
+
pyasn1==0.5.1
|
164 |
+
pyasn1-modules==0.3.0
|
165 |
+
pycparser==2.21
|
166 |
+
pydantic==2.5.3
|
167 |
+
pydantic_core==2.14.6
|
168 |
+
pydeck==0.8.1b0
|
169 |
+
Pygments==2.17.2
|
170 |
+
pymdown-extensions==10.7
|
171 |
+
pyparsing==3.1.1
|
172 |
+
pypdf==3.17.4
|
173 |
+
PyPika==0.48.9
|
174 |
+
pyproject_hooks==1.0.0
|
175 |
+
python-dateutil==2.8.2
|
176 |
+
python-decouple==3.8
|
177 |
+
python-dotenv==1.0.0
|
178 |
+
python-json-logger==2.0.7
|
179 |
+
pytz==2023.3.post1
|
180 |
+
PyYAML==6.0.1
|
181 |
+
pyzmq==25.1.2
|
182 |
+
qtconsole==5.5.1
|
183 |
+
QtPy==2.4.1
|
184 |
+
referencing==0.32.0
|
185 |
+
regex==2023.12.25
|
186 |
+
requests==2.31.0
|
187 |
+
requests-oauthlib==1.3.1
|
188 |
+
rfc3339-validator==0.1.4
|
189 |
+
rfc3986-validator==0.1.1
|
190 |
+
rich==13.7.0
|
191 |
+
rpds-py==0.16.2
|
192 |
+
rsa==4.9
|
193 |
+
safetensors==0.4.1
|
194 |
+
scikit-learn==1.4.0
|
195 |
+
scipy==1.12.0
|
196 |
+
Send2Trash==1.8.2
|
197 |
+
sentence-transformers==2.3.0
|
198 |
+
sentencepiece==0.1.99
|
199 |
+
six==1.16.0
|
200 |
+
smmap==5.0.1
|
201 |
+
sniffio==1.3.0
|
202 |
+
soupsieve==2.5
|
203 |
+
SQLAlchemy==2.0.24
|
204 |
+
st-annotated-text==4.0.1
|
205 |
+
stack-data==0.6.3
|
206 |
+
starlette==0.35.1
|
207 |
+
streamlit==1.29.0
|
208 |
+
streamlit-aggrid==0.3.4.post3
|
209 |
+
streamlit-camera-input-live==0.2.0
|
210 |
+
streamlit-card==1.0.0
|
211 |
+
streamlit-embedcode==0.1.2
|
212 |
+
streamlit-extras==0.3.6
|
213 |
+
streamlit-faker==0.0.3
|
214 |
+
streamlit-feedback==0.1.3
|
215 |
+
streamlit-image-coordinates==0.1.6
|
216 |
+
streamlit-keyup==0.2.2
|
217 |
+
streamlit-toggle-switch==1.0.2
|
218 |
+
streamlit-vertical-slider==2.5.5
|
219 |
+
sympy==1.12
|
220 |
+
tenacity==8.2.3
|
221 |
+
terminado==0.18.0
|
222 |
+
threadpoolctl==3.2.0
|
223 |
+
tiktoken==0.5.2
|
224 |
+
tinycss2==1.2.1
|
225 |
+
tokenizers==0.15.0
|
226 |
+
toml==0.10.2
|
227 |
+
tomli==2.0.1
|
228 |
+
toolz==0.12.0
|
229 |
+
torch==2.1.2
|
230 |
+
tornado==6.4
|
231 |
+
tqdm==4.66.1
|
232 |
+
traitlets==5.14.0
|
233 |
+
transformers==4.36.2
|
234 |
+
trulens==0.13.4
|
235 |
+
trulens-eval==0.20.0
|
236 |
+
typer==0.9.0
|
237 |
+
types-python-dateutil==2.8.19.14
|
238 |
+
typing-inspect==0.9.0
|
239 |
+
typing_extensions==4.9.0
|
240 |
+
tzdata==2023.4
|
241 |
+
tzlocal==5.2
|
242 |
+
uri-template==1.3.0
|
243 |
+
urllib3==2.1.0
|
244 |
+
uvicorn==0.27.0
|
245 |
+
uvloop==0.19.0
|
246 |
+
validators==0.22.0
|
247 |
+
watchfiles==0.21.0
|
248 |
+
wcwidth==0.2.12
|
249 |
+
webcolors==1.13
|
250 |
+
webencodings==0.5.1
|
251 |
+
websocket-client==1.7.0
|
252 |
+
websockets==12.0
|
253 |
+
widgetsnbextension==4.0.9
|
254 |
+
wrapt==1.16.0
|
255 |
+
yarl==1.9.4
|
256 |
+
zipp==3.17.0
|
archive/streamlit_app/streamlit_app_14Feb2024.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_feedback import streamlit_feedback
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
import nest_asyncio
|
9 |
+
|
10 |
+
import chromadb
|
11 |
+
from llama_index.legacy import (
|
12 |
+
VectorStoreIndex,
|
13 |
+
SimpleDirectoryReader,
|
14 |
+
ServiceContext,
|
15 |
+
Document
|
16 |
+
)
|
17 |
+
|
18 |
+
from llama_index.legacy.vector_stores.chroma import ChromaVectorStore
|
19 |
+
from llama_index.legacy.storage.storage_context import StorageContext
|
20 |
+
from llama_index.legacy.embeddings import HuggingFaceEmbedding
|
21 |
+
from llama_index.legacy.llms import OpenAI
|
22 |
+
from llama_index.legacy.memory import ChatMemoryBuffer
|
23 |
+
|
24 |
+
from vision_api import get_transcribed_text
|
25 |
+
|
26 |
+
nest_asyncio.apply()
|
27 |
+
|
28 |
+
# App title
|
29 |
+
st.set_page_config(page_title="π¬ Open AI Chatbot")
|
30 |
+
openai_api = os.getenv("OPENAI_API_KEY")
|
31 |
+
|
32 |
+
# "./raw_documents/HI_Knowledge_Base.pdf"
|
33 |
+
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
34 |
+
"./raw_documents/qna.txt"]
|
35 |
+
embedding_model = "BAAI/bge-small-en-v1.5"
|
36 |
+
persisted_vector_db = "./models/chroma_db"
|
37 |
+
fine_tuned_path = "local:models/fine-tuned-embeddings"
|
38 |
+
system_content = ("You are a helpful study assistant. "
|
39 |
+
"You do not respond as 'User' or pretend to be 'User'. "
|
40 |
+
"You only respond once as 'Assistant'."
|
41 |
+
)
|
42 |
+
|
43 |
+
data_df = pd.DataFrame(
|
44 |
+
{
|
45 |
+
"Completion": [30, 40, 100, 10],
|
46 |
+
}
|
47 |
+
)
|
48 |
+
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]
|
49 |
+
|
50 |
+
# Replicate Credentials
|
51 |
+
with st.sidebar:
|
52 |
+
st.title("π¬ Open AI Chatbot")
|
53 |
+
st.write("This chatbot is created using the GPT model from Open AI.")
|
54 |
+
if openai_api:
|
55 |
+
pass
|
56 |
+
elif "OPENAI_API_KEY" in st.secrets:
|
57 |
+
st.success("API key already provided!", icon="β
")
|
58 |
+
openai_api = st.secrets["OPENAI_API_KEY"]
|
59 |
+
else:
|
60 |
+
openai_api = st.text_input("Enter OpenAI API token:", type="password")
|
61 |
+
if not (openai_api.startswith("sk-") and len(openai_api)==51):
|
62 |
+
st.warning("Please enter your credentials!", icon="β οΈ")
|
63 |
+
else:
|
64 |
+
st.success("Proceed to entering your prompt message!", icon="π")
|
65 |
+
|
66 |
+
### for streamlit purpose
|
67 |
+
os.environ["OPENAI_API_KEY"] = openai_api
|
68 |
+
|
69 |
+
st.subheader("Models and parameters")
|
70 |
+
selected_model = st.sidebar.selectbox("Choose an OpenAI model",
|
71 |
+
["gpt-3.5-turbo-1106", "gpt-4-1106-preview"],
|
72 |
+
key="selected_model")
|
73 |
+
temperature = st.sidebar.slider("temperature", min_value=0.0, max_value=2.0,
|
74 |
+
value=0.0, step=0.01)
|
75 |
+
st.data_editor(
|
76 |
+
data_df,
|
77 |
+
column_config={
|
78 |
+
"Completion": st.column_config.ProgressColumn(
|
79 |
+
"Completion %",
|
80 |
+
help="Percentage of content covered",
|
81 |
+
format="%.1f%%",
|
82 |
+
min_value=0,
|
83 |
+
max_value=100,
|
84 |
+
),
|
85 |
+
},
|
86 |
+
hide_index=False,
|
87 |
+
)
|
88 |
+
|
89 |
+
st.markdown("π Reach out to SakiMilo to learn how to create this app!")
|
90 |
+
|
91 |
+
if "init" not in st.session_state.keys():
|
92 |
+
st.session_state.init = {"warm_started": "No"}
|
93 |
+
st.session_state.feedback = False
|
94 |
+
|
95 |
+
# Store LLM generated responses
|
96 |
+
if "messages" not in st.session_state.keys():
|
97 |
+
st.session_state.messages = [{"role": "assistant",
|
98 |
+
"content": "How may I assist you today?",
|
99 |
+
"type": "text"}]
|
100 |
+
|
101 |
+
if "feedback_key" not in st.session_state:
|
102 |
+
st.session_state.feedback_key = 0
|
103 |
+
|
104 |
+
if "release_file" not in st.session_state:
|
105 |
+
st.session_state.release_file = "false"
|
106 |
+
|
107 |
+
def clear_chat_history():
|
108 |
+
st.session_state.messages = [{"role": "assistant",
|
109 |
+
"content": "How may I assist you today?",
|
110 |
+
"type": "text"}]
|
111 |
+
chat_engine = get_query_engine(input_files=input_files,
|
112 |
+
llm_model=selected_model,
|
113 |
+
temperature=temperature,
|
114 |
+
embedding_model=embedding_model,
|
115 |
+
fine_tuned_path=fine_tuned_path,
|
116 |
+
system_content=system_content,
|
117 |
+
persisted_path=persisted_vector_db)
|
118 |
+
chat_engine.reset()
|
119 |
+
|
120 |
+
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
121 |
+
if st.sidebar.button("I want to submit a feedback!"):
|
122 |
+
st.session_state.feedback = True
|
123 |
+
st.session_state.feedback_key += 1 # overwrite feedback component
|
124 |
+
|
125 |
+
@st.cache_resource
|
126 |
+
def get_document_object(input_files):
|
127 |
+
documents = SimpleDirectoryReader(input_files=input_files).load_data()
|
128 |
+
document = Document(text="\n\n".join([doc.text for doc in documents]))
|
129 |
+
return document
|
130 |
+
|
131 |
+
@st.cache_resource
|
132 |
+
def get_llm_object(selected_model, temperature):
|
133 |
+
llm = OpenAI(model=selected_model, temperature=temperature)
|
134 |
+
return llm
|
135 |
+
|
136 |
+
@st.cache_resource
|
137 |
+
def get_embedding_model(model_name, fine_tuned_path=None):
|
138 |
+
if fine_tuned_path is None:
|
139 |
+
print(f"loading from `{model_name}` from huggingface")
|
140 |
+
embed_model = HuggingFaceEmbedding(model_name=model_name)
|
141 |
+
else:
|
142 |
+
print(f"loading from local `{fine_tuned_path}`")
|
143 |
+
embed_model = fine_tuned_path
|
144 |
+
return embed_model
|
145 |
+
|
146 |
+
@st.cache_resource
|
147 |
+
def get_query_engine(input_files, llm_model, temperature,
|
148 |
+
embedding_model, fine_tuned_path,
|
149 |
+
system_content, persisted_path):
|
150 |
+
|
151 |
+
llm = get_llm_object(llm_model, temperature)
|
152 |
+
embedded_model = get_embedding_model(
|
153 |
+
model_name=embedding_model,
|
154 |
+
fine_tuned_path=fine_tuned_path
|
155 |
+
)
|
156 |
+
service_context = ServiceContext.from_defaults(
|
157 |
+
llm=llm,
|
158 |
+
embed_model=embedded_model
|
159 |
+
)
|
160 |
+
|
161 |
+
if os.path.exists(persisted_path):
|
162 |
+
print("loading from vector database - chroma")
|
163 |
+
db = chromadb.PersistentClient(path=persisted_path)
|
164 |
+
chroma_collection = db.get_or_create_collection("quickstart")
|
165 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
166 |
+
storage_context = StorageContext.from_defaults(
|
167 |
+
vector_store=vector_store
|
168 |
+
)
|
169 |
+
index = VectorStoreIndex.from_vector_store(
|
170 |
+
vector_store=vector_store,
|
171 |
+
service_context=service_context,
|
172 |
+
storage_context=storage_context
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
print("create in-memory vector store")
|
176 |
+
document = get_document_object(input_files)
|
177 |
+
index = VectorStoreIndex.from_documents(
|
178 |
+
[document],
|
179 |
+
service_context=service_context
|
180 |
+
)
|
181 |
+
|
182 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
183 |
+
chat_engine = index.as_chat_engine(
|
184 |
+
chat_mode="context",
|
185 |
+
memory=memory,
|
186 |
+
system_prompt=system_content
|
187 |
+
)
|
188 |
+
|
189 |
+
return chat_engine
|
190 |
+
|
191 |
+
def generate_llm_response(prompt_input):
|
192 |
+
chat_engine = get_query_engine(input_files=input_files,
|
193 |
+
llm_model=selected_model,
|
194 |
+
temperature=temperature,
|
195 |
+
embedding_model=embedding_model,
|
196 |
+
fine_tuned_path=fine_tuned_path,
|
197 |
+
system_content=system_content,
|
198 |
+
persisted_path=persisted_vector_db)
|
199 |
+
|
200 |
+
# st.session_state.messages
|
201 |
+
response = chat_engine.stream_chat(prompt_input)
|
202 |
+
return response
|
203 |
+
|
204 |
+
def handle_feedback(user_response):
|
205 |
+
st.toast("βοΈ Feedback received!")
|
206 |
+
st.session_state.feedback = False
|
207 |
+
|
208 |
+
def handle_image_upload():
|
209 |
+
st.session_state.release_file = "true"
|
210 |
+
|
211 |
+
# Warm start
|
212 |
+
if st.session_state.init["warm_started"] == "No":
|
213 |
+
clear_chat_history()
|
214 |
+
st.session_state.init["warm_started"] = "Yes"
|
215 |
+
|
216 |
+
# Image upload option
|
217 |
+
with st.sidebar:
|
218 |
+
image_file = st.file_uploader("Upload your image here...",
|
219 |
+
type=["png", "jpeg", "jpg"],
|
220 |
+
on_change=handle_image_upload)
|
221 |
+
|
222 |
+
if st.session_state.release_file == "true" and image_file:
|
223 |
+
with st.spinner("Uploading..."):
|
224 |
+
b64string = base64.b64encode(image_file.read()).decode('utf-8')
|
225 |
+
message = {
|
226 |
+
"role": "user",
|
227 |
+
"content": b64string,
|
228 |
+
"type": "image"}
|
229 |
+
st.session_state.messages.append(message)
|
230 |
+
|
231 |
+
transcribed_msg = get_transcribed_text(b64string)
|
232 |
+
message = {
|
233 |
+
"role": "admin",
|
234 |
+
"content": transcribed_msg,
|
235 |
+
"type": "text"}
|
236 |
+
st.session_state.messages.append(message)
|
237 |
+
st.session_state.release_file = "false"
|
238 |
+
|
239 |
+
# Display or clear chat messages
|
240 |
+
for message in st.session_state.messages:
|
241 |
+
if message["role"] == "admin":
|
242 |
+
continue
|
243 |
+
with st.chat_message(message["role"]):
|
244 |
+
if message["type"] == "text":
|
245 |
+
st.write(message["content"])
|
246 |
+
elif message["type"] == "image":
|
247 |
+
img_io = BytesIO(base64.b64decode(message["content"].encode("utf-8")))
|
248 |
+
st.image(img_io)
|
249 |
+
|
250 |
+
# User-provided prompt
|
251 |
+
if prompt := st.chat_input(disabled=not openai_api):
|
252 |
+
client = OpenAI()
|
253 |
+
st.session_state.messages.append({"role": "user",
|
254 |
+
"content": prompt,
|
255 |
+
"type": "text"})
|
256 |
+
with st.chat_message("user"):
|
257 |
+
st.write(prompt)
|
258 |
+
|
259 |
+
# Retrieve text prompt from image submission
|
260 |
+
if prompt is None and \
|
261 |
+
st.session_state.messages[-1]["role"] == "admin":
|
262 |
+
prompt = st.session_state.messages[-1]["content"]
|
263 |
+
|
264 |
+
# Generate a new response if last message is not from assistant
|
265 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
266 |
+
with st.chat_message("assistant"):
|
267 |
+
with st.spinner("Thinking..."):
|
268 |
+
response = generate_llm_response(prompt)
|
269 |
+
placeholder = st.empty()
|
270 |
+
full_response = ""
|
271 |
+
for token in response.response_gen:
|
272 |
+
full_response += token
|
273 |
+
placeholder.markdown(full_response)
|
274 |
+
placeholder.markdown(full_response)
|
275 |
+
|
276 |
+
message = {"role": "assistant",
|
277 |
+
"content": full_response,
|
278 |
+
"type": "text"}
|
279 |
+
st.session_state.messages.append(message)
|
280 |
+
|
281 |
+
# Trigger feedback
|
282 |
+
if st.session_state.feedback:
|
283 |
+
result = streamlit_feedback(
|
284 |
+
feedback_type="thumbs",
|
285 |
+
optional_text_label="[Optional] Please provide an explanation",
|
286 |
+
on_submit=handle_feedback,
|
287 |
+
key=f"feedback_{st.session_state.feedback_key}"
|
288 |
+
)
|
archive/{streamlit_app_archive.py β streamlit_app/streamlit_app_15Jan2024.py}
RENAMED
File without changes
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6cf8f7e78059a729ff1d88eca662790e198f689fd928b4f862a1aaaf93295e4
|
3 |
+
size 25140000
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/header.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 100
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a95628a4a7b1b1b04e3993394511109b03e9060612be3ebc5a8c488e1cada5c
|
3 |
size 100
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80795638f4e5e55013e63f7f283e2b3b97b5ad2ac54e10c35cd9564b50c2ba94
|
3 |
+
size 868175
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbcafc88fc032c4c88850545971753cc8c8b24837ee14c55cce0839d49055d89
|
3 |
+
size 60000
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/link_lists.bin
CHANGED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e08b2de8cb48360a38c01ab6cb218345297bfa7bcf83739723d00a74baa8161e
|
3 |
+
size 131332
|
models/chroma_db/chroma.sqlite3
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29a8ddc3f6f6744fe7cce8314b9c7dd60545b66e3bfd25ad7988b47afa93cc94
|
3 |
+
size 250535936
|
notebooks/{fine-tuning-embedding-model.ipynb β 001_fine-tuning-embedding-model.ipynb}
RENAMED
File without changes
|
notebooks/002_persisted-embedding-model.ipynb
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "8acae3ed-2953-45a3-aba9-0327b6ae3679",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### ChromaDB method - create vectorstore based on Chroma"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "7de9c591-5a77-4bbe-80f1-4897e15f0b97",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import chromadb\n",
|
19 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
20 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
21 |
+
"from llama_index.core import StorageContext\n",
|
22 |
+
"from llama_index.core import ServiceContext\n",
|
23 |
+
"from llama_index.core import Document\n",
|
24 |
+
"\n",
|
25 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
26 |
+
"from llama_index.core import Settings\n",
|
27 |
+
"\n",
|
28 |
+
"import nest_asyncio\n",
|
29 |
+
"nest_asyncio.apply()\n",
|
30 |
+
"\n",
|
31 |
+
"import time"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"id": "3e65dff6-77b6-4be8-8857-5cecf3a035bb",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# load some documents\n",
|
42 |
+
"documents = SimpleDirectoryReader(input_files=[\n",
|
43 |
+
" \"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
44 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
45 |
+
" \"../raw_documents/qna.txt\"\n",
|
46 |
+
" ]).load_data()\n",
|
47 |
+
"document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"id": "bd86b3f5-1dfc-4257-bd9c-86d34f02398d",
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [],
|
56 |
+
"source": [
|
57 |
+
"# initialize client, setting path to save data\n",
|
58 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db\")"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "f568ce7b-bcbf-455c-acf1-6c2cae129fed",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"# create collection\n",
|
69 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": null,
|
75 |
+
"id": "ed0b018e-1982-46b2-b1b4-04f5c0ce8672",
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"# assign chroma as the vector_store to the context\n",
|
80 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": null,
|
86 |
+
"id": "eb5edab2-30db-4bf7-96b5-4005d3161988",
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": []
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": null,
|
94 |
+
"id": "0946b6ce-96ab-44de-ad75-e424a8429f67",
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"Settings.llm = None\n",
|
99 |
+
"Settings.chunk_size = 1024\n",
|
100 |
+
"Settings.embed_model = \"local:../models/fine-tuned-embeddings\""
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"id": "b8c73a2c-1129-406a-8046-085afcaf9cbb",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"nodes = Settings.node_parser.get_nodes_from_documents(documents)"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": null,
|
116 |
+
"id": "adfe688f-95c0-477c-a9de-e9e77541a1d7",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": []
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"id": "dab4c6f3-ef67-4d90-b3d5-e290c5d1b6f4",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"id": "6a764113-ad7e-4674-aa57-ebbf405902a8",
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [],
|
137 |
+
"source": [
|
138 |
+
"storage_context.docstore.add_documents(nodes)"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"id": "38e7c88d-6c45-4275-8293-d09b4b85a7cf",
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": []
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": null,
|
152 |
+
"id": "e492ed4a-23a3-47d6-8b50-51fb48b3aa05",
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [],
|
155 |
+
"source": [
|
156 |
+
"start_time = time.time()"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": null,
|
162 |
+
"id": "cbd11b89-9b83-4f08-bb30-160f750f2ffb",
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": [
|
166 |
+
"vector_index = VectorStoreIndex(nodes, storage_context=storage_context)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"id": "082a0d7e-b025-4db1-be2a-7a0b7bc453b9",
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"vector_query_engine = vector_index.as_query_engine()"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"id": "d3bd848d-9985-4a3d-bdc4-ec340cc69ef3",
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [],
|
185 |
+
"source": [
|
186 |
+
"indexing_cost = time.time() - start_time\n",
|
187 |
+
"indexing_cost = indexing_cost / 60\n",
|
188 |
+
"print(f\"Indexing time: {indexing_cost:.1f} mins\")"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": null,
|
194 |
+
"id": "3290e870-41d7-49c4-9c4f-cb16bd1f469e",
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"response = vector_query_engine.query(\"what is the healthcare philosophy in singapore\")\n",
|
199 |
+
"response"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"id": "131d907a-0677-4ad8-b3f7-6fc9b9c5d0a5",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": []
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "08fb2be5-3a44-4bb8-a9fc-61d7f03b7a35",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": []
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"id": "a7fc01f6-4738-415b-a96b-afd6cf8d789a",
|
221 |
+
"metadata": {},
|
222 |
+
"source": [
|
223 |
+
"### ChromaDB method - load vectorstore based on Chroma"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"id": "c1a42c35-5f57-423c-8fb7-7d18b3b466b5",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"import chromadb\n",
|
234 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
235 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
236 |
+
"from llama_index.core import StorageContext\n",
|
237 |
+
"from llama_index.core import ServiceContext\n",
|
238 |
+
"from llama_index.core import Document\n",
|
239 |
+
"\n",
|
240 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
241 |
+
"from llama_index.llms.openai import OpenAI\n",
|
242 |
+
"from llama_index.core.memory import ChatMemoryBuffer\n",
|
243 |
+
"\n",
|
244 |
+
"import time"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": null,
|
250 |
+
"id": "72dd0ece-c72d-428a-89b4-9494d948c845",
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [],
|
253 |
+
"source": []
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": null,
|
258 |
+
"id": "d38dc953-b923-4128-86a1-c8c6f69af0ed",
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": [
|
262 |
+
"fine_tuned_path = \"local:../models/fine-tuned-embeddings\""
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"id": "4c83c613-2cfc-4871-9d07-c82f77a3bd5e",
|
269 |
+
"metadata": {},
|
270 |
+
"outputs": [],
|
271 |
+
"source": [
|
272 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.0)"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"id": "0583e9b0-d977-488c-8331-46dfa749924c",
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"Settings.llm = llm\n",
|
283 |
+
"Settings.embed_model = fine_tuned_path"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": null,
|
289 |
+
"id": "f994f440-f647-48b4-a517-46a79f7561e5",
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [],
|
292 |
+
"source": []
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": null,
|
297 |
+
"id": "2159a2b6-494b-41b9-ac54-dd342bfb74ba",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db\")"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": null,
|
307 |
+
"id": "1b385644-b46e-4d13-88fa-9f4af39db405",
|
308 |
+
"metadata": {},
|
309 |
+
"outputs": [],
|
310 |
+
"source": [
|
311 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": null,
|
317 |
+
"id": "93cb53d1-6b8c-4b2d-a839-53501c0d54b2",
|
318 |
+
"metadata": {},
|
319 |
+
"outputs": [],
|
320 |
+
"source": [
|
321 |
+
"# assign chroma as the vector_store to the context\n",
|
322 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
323 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"execution_count": null,
|
329 |
+
"id": "c40d59e1-6d42-41f0-8c9b-70aa026093ae",
|
330 |
+
"metadata": {},
|
331 |
+
"outputs": [],
|
332 |
+
"source": [
|
333 |
+
"# create your index\n",
|
334 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
335 |
+
" vector_store=vector_store,\n",
|
336 |
+
" storage_context=storage_context\n",
|
337 |
+
")"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"cell_type": "code",
|
342 |
+
"execution_count": null,
|
343 |
+
"id": "73ba6d06-ba69-4b5e-962a-9cf7d2dc4d94",
|
344 |
+
"metadata": {},
|
345 |
+
"outputs": [],
|
346 |
+
"source": []
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": null,
|
351 |
+
"id": "1a506940-c2b4-4d14-ad93-fd451331c582",
|
352 |
+
"metadata": {},
|
353 |
+
"outputs": [],
|
354 |
+
"source": [
|
355 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
356 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
357 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
358 |
+
")"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": null,
|
364 |
+
"id": "3f592848-8536-4b4d-b34a-adc32d043432",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": null,
|
374 |
+
"id": "6c7df81a-fd2f-42bf-b09c-46d7750f7252",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [],
|
377 |
+
"source": [
|
378 |
+
"chat_engine = index.as_chat_engine(\n",
|
379 |
+
" chat_mode=\"context\",\n",
|
380 |
+
" memory=memory,\n",
|
381 |
+
" system_prompt=system_content\n",
|
382 |
+
")"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "code",
|
387 |
+
"execution_count": null,
|
388 |
+
"id": "434f0caf-8b1f-40c6-b9ec-b039cd1ca612",
|
389 |
+
"metadata": {},
|
390 |
+
"outputs": [],
|
391 |
+
"source": [
|
392 |
+
"res = chat_engine.chat(\"what is the healthcare philosophy in singapore\")\n",
|
393 |
+
"print(res.response)"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": null,
|
399 |
+
"id": "1e62303c-3a00-448f-ad93-15cb6cee1f24",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": []
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "dad72f9f-7f86-407d-93be-f5724cb30d5c",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"hi_engine = index.as_query_engine(\n",
|
412 |
+
" memory=memory,\n",
|
413 |
+
" system_prompt=system_content,\n",
|
414 |
+
" similarity_top_k=3,\n",
|
415 |
+
" streaming=True\n",
|
416 |
+
")"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": null,
|
422 |
+
"id": "ab778a5d-d438-4f39-88f5-c67a1f1d575e",
|
423 |
+
"metadata": {},
|
424 |
+
"outputs": [],
|
425 |
+
"source": []
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "code",
|
429 |
+
"execution_count": null,
|
430 |
+
"id": "7bb7c21a-7461-40c1-87a7-4a1f92f70153",
|
431 |
+
"metadata": {},
|
432 |
+
"outputs": [],
|
433 |
+
"source": [
|
434 |
+
"res = hi_engine.query(\"What is llama2?\")\n",
|
435 |
+
"print(res)"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": null,
|
441 |
+
"id": "874a39ce-e682-42fa-8085-646bacea6cdb",
|
442 |
+
"metadata": {},
|
443 |
+
"outputs": [],
|
444 |
+
"source": []
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"execution_count": null,
|
449 |
+
"id": "301e8270-783d-4942-a05f-9683ca96fbda",
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [],
|
452 |
+
"source": []
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"metadata": {
|
456 |
+
"kernelspec": {
|
457 |
+
"display_name": "Python 3 (ipykernel)",
|
458 |
+
"language": "python",
|
459 |
+
"name": "python3"
|
460 |
+
},
|
461 |
+
"language_info": {
|
462 |
+
"codemirror_mode": {
|
463 |
+
"name": "ipython",
|
464 |
+
"version": 3
|
465 |
+
},
|
466 |
+
"file_extension": ".py",
|
467 |
+
"mimetype": "text/x-python",
|
468 |
+
"name": "python",
|
469 |
+
"nbconvert_exporter": "python",
|
470 |
+
"pygments_lexer": "ipython3",
|
471 |
+
"version": "3.9.18"
|
472 |
+
}
|
473 |
+
},
|
474 |
+
"nbformat": 4,
|
475 |
+
"nbformat_minor": 5
|
476 |
+
}
|
notebooks/{create_mock_qna.ipynb β 003_create_mock_qna.ipynb}
RENAMED
File without changes
|
notebooks/{qna_prompting_with_function_calling.ipynb β 004_qna_prompting_with_function_calling.ipynb}
RENAMED
@@ -339,6 +339,32 @@
|
|
339 |
"print(json_response)"
|
340 |
]
|
341 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
"execution_count": null,
|
|
|
339 |
"print(json_response)"
|
340 |
]
|
341 |
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": null,
|
345 |
+
"id": "049a28bf-abe5-4247-970f-615d1877a2c0",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": []
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"cell_type": "code",
|
352 |
+
"execution_count": null,
|
353 |
+
"id": "de49c61a-0b3e-4623-abcb-a7625ac4d0db",
|
354 |
+
"metadata": {},
|
355 |
+
"outputs": [],
|
356 |
+
"source": [
|
357 |
+
"prompt = \"I am interested in 2nd chapter, can you test my understanding of this chapter?\"\n",
|
358 |
+
"response = client.chat.completions.create(\n",
|
359 |
+
" model = 'gpt-3.5-turbo',\n",
|
360 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
361 |
+
" functions = qna_custom_functions,\n",
|
362 |
+
" function_call = 'auto'\n",
|
363 |
+
")\n",
|
364 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
365 |
+
"print(json_response)"
|
366 |
+
]
|
367 |
+
},
|
368 |
{
|
369 |
"cell_type": "code",
|
370 |
"execution_count": null,
|
notebooks/005_qna_prompting_with_pydantic_embeddings.ipynb
ADDED
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "4cf3ca7c-2c43-495b-a1ee-24c770f0ad1e",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Simple OpenAI agent with tool"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "a9d74b11-4049-4e3c-839e-7d13d7c0dadc",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import json\n",
|
19 |
+
"import sqlite3\n",
|
20 |
+
"from typing import Sequence, List\n",
|
21 |
+
"from pydantic import BaseModel, Field\n",
|
22 |
+
"\n",
|
23 |
+
"from llama_index.core.llms import ChatMessage\n",
|
24 |
+
"from llama_index.core.tools import BaseTool, FunctionTool\n",
|
25 |
+
"from llama_index.llms.openai import OpenAI\n",
|
26 |
+
"from llama_index.agent.openai import OpenAIAgent\n",
|
27 |
+
"\n",
|
28 |
+
"import nest_asyncio\n",
|
29 |
+
"\n",
|
30 |
+
"nest_asyncio.apply()"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "33da3ba3-7d5d-4528-8e31-cabf85a88886",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"id": "b27b2c3b-1876-4a20-8fb9-cddd6df51ef3",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"db_path = \"../database/mock_qna.db\"\n",
|
49 |
+
"con = sqlite3.connect(db_path)\n",
|
50 |
+
"cur = con.cursor()"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "b69adba2-9f98-460b-b0a3-e759d6ac1b88",
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": []
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "39ca840b-0ec7-4279-9654-e4ddfda6137f",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"# define sample Tool\n",
|
69 |
+
"def multiply(a: int, b: int) -> int:\n",
|
70 |
+
" \"\"\"Multiply two integers and returns the result integer\"\"\"\n",
|
71 |
+
" return a * b\n",
|
72 |
+
"\n",
|
73 |
+
"multiply_tool = FunctionTool.from_defaults(fn=multiply)\n",
|
74 |
+
"\n",
|
75 |
+
"def add(a: int, b: int) -> int:\n",
|
76 |
+
" \"\"\"Add two integers and returns the result integer\"\"\"\n",
|
77 |
+
" return a + b\n",
|
78 |
+
"\n",
|
79 |
+
"add_tool = FunctionTool.from_defaults(fn=add)\n",
|
80 |
+
"\n",
|
81 |
+
"class Song(BaseModel):\n",
|
82 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
83 |
+
"\n",
|
84 |
+
" name: str\n",
|
85 |
+
" artist: str\n",
|
86 |
+
"\n",
|
87 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"id": "14b64612-1320-48b2-b5ff-91cde659cbf8",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"class QnA_Model(BaseModel):\n",
|
98 |
+
" chapter_n: str = Field(..., \n",
|
99 |
+
" pattern=r'^Chapter_\\d*$',\n",
|
100 |
+
" description=(\n",
|
101 |
+
" \"which chapter to extract, the format of this function argumet\"\n",
|
102 |
+
" \"is with `Chapter_` as prefix concatenated with chapter number\"\n",
|
103 |
+
" \"in integer. For example, `Chapter_2`, `Chapter_10`.\")\n",
|
104 |
+
" )\n",
|
105 |
+
"\n",
|
106 |
+
"description = \"\"\"\n",
|
107 |
+
" Use this tool to extract the chapter information from the body of the input text, \n",
|
108 |
+
" the format looks as follow:\n",
|
109 |
+
" The output should be in the format with `Chapter_` as prefix.\n",
|
110 |
+
" Example 1: `Chapter_1` for first chapter\n",
|
111 |
+
" Example 2: For chapter 12 of the textbook, you should return `Chapter_12`\n",
|
112 |
+
" Example 3: `Chapter_5` for fifth chapter\n",
|
113 |
+
" Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.\n",
|
114 |
+
"\"\"\"\n",
|
115 |
+
"\n",
|
116 |
+
"def get_qna_question(chapter_n: str):\n",
|
117 |
+
" \"\"\"\n",
|
118 |
+
" Use this tool to extract the chapter information from the body of the input text, \n",
|
119 |
+
" the format looks as follow:\n",
|
120 |
+
" The output should be in the format with `Chapter_` as prefix.\n",
|
121 |
+
" Example 1: `Chapter_1` for first chapter\n",
|
122 |
+
" Example 2: For chapter 12 of the textbook, you should return `Chapter_12`\n",
|
123 |
+
" Example 3: `Chapter_5` for fifth chapter\n",
|
124 |
+
" Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.\n",
|
125 |
+
" \"\"\"\n",
|
126 |
+
" sql_string = f\"\"\"SELECT id, question, option_1, option_2, option_3, option_4, correct_answer\n",
|
127 |
+
" FROM qna_tbl\n",
|
128 |
+
" WHERE chapter='{chapter_n}'\n",
|
129 |
+
" \"\"\"\n",
|
130 |
+
" res = cur.execute(sql_string)\n",
|
131 |
+
" result = res.fetchone()\n",
|
132 |
+
"\n",
|
133 |
+
" id = result[0]\n",
|
134 |
+
" question = result[1]\n",
|
135 |
+
" option_1 = result[2]\n",
|
136 |
+
" option_2 = result[3]\n",
|
137 |
+
" option_3 = result[4]\n",
|
138 |
+
" option_4 = result[5]\n",
|
139 |
+
" c_answer = result[6]\n",
|
140 |
+
"\n",
|
141 |
+
" qna_str = \"Question: \\n\" + \\\n",
|
142 |
+
" \"========= \\n\" + \\\n",
|
143 |
+
" question.replace(\"\\\\n\", \"\\n\") + \"\\n\" + \\\n",
|
144 |
+
" \"A) \" + option_1 + \"\\n\" + \\\n",
|
145 |
+
" \"B) \" + option_2 + \"\\n\" + \\\n",
|
146 |
+
" \"C) \" + option_3 + \"\\n\" + \\\n",
|
147 |
+
" \"D) \" + option_4\n",
|
148 |
+
" \n",
|
149 |
+
" # return id, qna_str, c_answer\n",
|
150 |
+
" return qna_str\n",
|
151 |
+
"\n",
|
152 |
+
"get_qna_question_tool = FunctionTool.from_defaults(\n",
|
153 |
+
" fn=get_qna_question,\n",
|
154 |
+
" name=\"Extract_Question\",\n",
|
155 |
+
" description=description,\n",
|
156 |
+
" fn_schema=QnA_Model\n",
|
157 |
+
")"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": null,
|
163 |
+
"id": "4df3e9f2-4a32-4449-b203-929dff9e7963",
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": []
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"id": "bbeeea36-0bb0-4edb-9b8c-adb7c64c4cd3",
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"# initialize openai agent\n",
|
176 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-0613\")\n",
|
177 |
+
"agent = OpenAIAgent.from_tools([multiply_tool, \n",
|
178 |
+
" add_tool, \n",
|
179 |
+
" song_fn, \n",
|
180 |
+
" get_qna_question_tool], llm=llm, verbose=True)"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": null,
|
186 |
+
"id": "0edafe7d-a835-4882-bd7d-1717a4cad462",
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [],
|
189 |
+
"source": []
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": null,
|
194 |
+
"id": "65158ede-b99f-477d-9d17-3be40e57a629",
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"res = agent.chat(message=\"3 x 2 equals?\", tool_choice=\"auto\")\n",
|
199 |
+
"res"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"id": "d74b0e5c-47a2-4de4-acd2-d39a94941f2d",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": []
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "d9787ed4-46a2-46aa-80e6-b317d9280b9e",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"res = agent.chat(message=\"3 plus 2 equals?\", tool_choice=\"auto\")\n",
|
218 |
+
"res"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
+
"id": "dd3358c6-e0e4-4354-8a4e-97d70254f648",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": []
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": null,
|
232 |
+
"id": "16e1db2c-dca3-4dc6-9cc5-c10644d5927c",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [],
|
235 |
+
"source": [
|
236 |
+
"res = agent.chat(message=\"give me the lyrics of taylor swift's `you belong with me`\", tool_choice=\"auto\")\n",
|
237 |
+
"res"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"id": "97a021f4-4701-4914-9ab8-0683b396f096",
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": []
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"id": "1f0b352d-8510-4b2a-a495-9f2e1fbfcddb",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"# res_stream = agent.stream_chat(message=\"3 x 2 equals?\")\n",
|
256 |
+
"# for r in res_stream.response_gen:\n",
|
257 |
+
"# print(r, end=\"\")"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": null,
|
263 |
+
"id": "ea0a6cd4-f204-4997-bdfb-cb9b5a9e1266",
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": []
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "markdown",
|
270 |
+
"id": "96c978e6-62e2-46e6-ae63-76841487f618",
|
271 |
+
"metadata": {},
|
272 |
+
"source": [
|
273 |
+
"### OpenAI agent with embeddings, and function calling"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": null,
|
279 |
+
"id": "6f0f5f02-c8e9-43a9-853d-12bb3c19dbe8",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"import os\n",
|
284 |
+
"import chromadb\n",
|
285 |
+
"\n",
|
286 |
+
"from llama_index.core import (\n",
|
287 |
+
" SimpleDirectoryReader,\n",
|
288 |
+
" VectorStoreIndex,\n",
|
289 |
+
" ServiceContext,\n",
|
290 |
+
" StorageContext,\n",
|
291 |
+
" load_index_from_storage,\n",
|
292 |
+
")\n",
|
293 |
+
"from llama_index.core.memory import ChatMemoryBuffer\n",
|
294 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
295 |
+
"from llama_index.core.tools import QueryEngineTool, ToolMetadata\n",
|
296 |
+
"from llama_index.llms.openai import OpenAI\n",
|
297 |
+
"from llama_index.agent.openai import OpenAIAgent\n",
|
298 |
+
"from llama_index.core.tools import BaseTool, FunctionTool\n",
|
299 |
+
"from llama_index.core import Settings\n",
|
300 |
+
"\n",
|
301 |
+
"from pydantic import BaseModel\n",
|
302 |
+
"import nest_asyncio\n",
|
303 |
+
"\n",
|
304 |
+
"nest_asyncio.apply()"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"execution_count": null,
|
310 |
+
"id": "54855aa4-dcad-404e-843f-c96d61046df3",
|
311 |
+
"metadata": {},
|
312 |
+
"outputs": [],
|
313 |
+
"source": []
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "markdown",
|
317 |
+
"id": "4edb89f6-bb2f-46ff-8807-dfb03115fcd5",
|
318 |
+
"metadata": {},
|
319 |
+
"source": [
|
320 |
+
"#### Parameters"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"cell_type": "code",
|
325 |
+
"execution_count": null,
|
326 |
+
"id": "61ad7369-8fd4-434f-b687-0c649940bda1",
|
327 |
+
"metadata": {},
|
328 |
+
"outputs": [],
|
329 |
+
"source": [
|
330 |
+
"selected_model = \"gpt-3.5-turbo-1106\"\n",
|
331 |
+
"temperature = 0.0\n",
|
332 |
+
"\n",
|
333 |
+
"persisted_vector_db = \"../models/chroma_db\"\n",
|
334 |
+
"input_files = [\"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
335 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
336 |
+
" \"../raw_documents/qna.txt\"]\n",
|
337 |
+
"fine_tuned_path = \"local:../models/fine-tuned-embeddings\"\n",
|
338 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
339 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
340 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
341 |
+
")"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": null,
|
347 |
+
"id": "a18117f5-48a7-4e81-9b46-541f382caf9e",
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [],
|
350 |
+
"source": []
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "markdown",
|
354 |
+
"id": "3210c837-9b40-4cd9-bb00-ead559deff6f",
|
355 |
+
"metadata": {},
|
356 |
+
"source": [
|
357 |
+
"#### Load vector store"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"cell_type": "code",
|
362 |
+
"execution_count": null,
|
363 |
+
"id": "b9dfba0c-f27d-49d1-86c5-a1d95c11b844",
|
364 |
+
"metadata": {},
|
365 |
+
"outputs": [],
|
366 |
+
"source": [
|
367 |
+
"if os.path.exists(persisted_vector_db):\n",
|
368 |
+
" db = chromadb.PersistentClient(path=persisted_vector_db)\n",
|
369 |
+
" chroma_collection = db.get_or_create_collection(\"quickstart\")\n",
|
370 |
+
" \n",
|
371 |
+
" # assign chroma as the vector_store to the context\n",
|
372 |
+
" vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
373 |
+
" storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
|
374 |
+
"\n",
|
375 |
+
"else:\n",
|
376 |
+
" documents = SimpleDirectoryReader(input_files=input_files).load_data()\n",
|
377 |
+
" document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))\n",
|
378 |
+
" \n",
|
379 |
+
" # initialize client, setting path to save data\n",
|
380 |
+
" db = chromadb.PersistentClient(path=persisted_vector_db)\n",
|
381 |
+
" \n",
|
382 |
+
" # create collection\n",
|
383 |
+
" chroma_collection = db.get_or_create_collection(\"quickstart\")\n",
|
384 |
+
"\n",
|
385 |
+
" # assign chroma as the vector_store to the context\n",
|
386 |
+
" vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
387 |
+
" storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": null,
|
393 |
+
"id": "693c9808-efbe-47a6-a49c-7143c63d13e5",
|
394 |
+
"metadata": {},
|
395 |
+
"outputs": [],
|
396 |
+
"source": []
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "code",
|
400 |
+
"execution_count": null,
|
401 |
+
"id": "c6bfae0b-7c97-4c2b-9996-f5e3ecf7a992",
|
402 |
+
"metadata": {},
|
403 |
+
"outputs": [],
|
404 |
+
"source": [
|
405 |
+
"# define sample Tool\n",
|
406 |
+
"def multiply(a: int, b: int) -> int:\n",
|
407 |
+
" \"\"\"Multiply two integers and returns the result integer\"\"\"\n",
|
408 |
+
" return a * b\n",
|
409 |
+
"\n",
|
410 |
+
"def add(a: int, b: int) -> int:\n",
|
411 |
+
" \"\"\"Add two integers and returns the result integer\"\"\"\n",
|
412 |
+
" return a + b\n",
|
413 |
+
"\n",
|
414 |
+
"class Song(BaseModel):\n",
|
415 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
416 |
+
"\n",
|
417 |
+
" name: str\n",
|
418 |
+
" artist: str\n",
|
419 |
+
"\n",
|
420 |
+
"add_tool = FunctionTool.from_defaults(fn=add)\n",
|
421 |
+
"multiply_tool = FunctionTool.from_defaults(fn=multiply)\n",
|
422 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": null,
|
428 |
+
"id": "16a80b2e-8e5f-462a-8616-042afe18be3a",
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [],
|
431 |
+
"source": [
|
432 |
+
"llm = OpenAI(model=selected_model, temperature=temperature)\n",
|
433 |
+
"\n",
|
434 |
+
"Settings.llm = llm\n",
|
435 |
+
"Settings.embed_model = fine_tuned_path"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": null,
|
441 |
+
"id": "95d3a420-1ee4-45bd-a18b-b398d9531db4",
|
442 |
+
"metadata": {},
|
443 |
+
"outputs": [],
|
444 |
+
"source": [
|
445 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
446 |
+
" vector_store=vector_store,\n",
|
447 |
+
" storage_context=storage_context\n",
|
448 |
+
")"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": null,
|
454 |
+
"id": "eac6d76d-059b-40e3-b67f-c736f1ce6baa",
|
455 |
+
"metadata": {},
|
456 |
+
"outputs": [],
|
457 |
+
"source": [
|
458 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
459 |
+
"\n",
|
460 |
+
"hi_engine = index.as_query_engine(\n",
|
461 |
+
" memory=memory,\n",
|
462 |
+
" system_prompt=system_content,\n",
|
463 |
+
" similarity_top_k=3,\n",
|
464 |
+
" streaming=True\n",
|
465 |
+
")"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"cell_type": "code",
|
470 |
+
"execution_count": null,
|
471 |
+
"id": "18e38a8f-9b51-4675-a1d5-8aaa6c21694c",
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [],
|
474 |
+
"source": [
|
475 |
+
"res = hi_engine.query(\"what is the healthcare philosophy in singapore\")\n",
|
476 |
+
"print(res)"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": null,
|
482 |
+
"id": "70dae6f7-682e-42d6-be59-3b807c10482c",
|
483 |
+
"metadata": {},
|
484 |
+
"outputs": [],
|
485 |
+
"source": []
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"cell_type": "code",
|
489 |
+
"execution_count": null,
|
490 |
+
"id": "1eb5df65-c926-4b22-8071-449d645b339f",
|
491 |
+
"metadata": {},
|
492 |
+
"outputs": [],
|
493 |
+
"source": [
|
494 |
+
"hi_query_tool = QueryEngineTool.from_defaults(\n",
|
495 |
+
" query_engine=hi_engine,\n",
|
496 |
+
" name=\"vector_tool\",\n",
|
497 |
+
" description=(\n",
|
498 |
+
" \"Provides information about Health Insurance landscape in Singapore. \"\n",
|
499 |
+
" \"Use a detailed plain text question as input to the tool.\"\n",
|
500 |
+
" )\n",
|
501 |
+
")\n",
|
502 |
+
"\n",
|
503 |
+
"# hi_query_tool = QueryEngineTool(\n",
|
504 |
+
"# query_engine=hi_engine,\n",
|
505 |
+
"# metadata=ToolMetadata(\n",
|
506 |
+
"# name=\"health_insurance_mentor\",\n",
|
507 |
+
"# description=(\n",
|
508 |
+
"# \"Provides information about Health Insurance landscape in Singapore. \"\n",
|
509 |
+
"# \"Use a detailed plain text question as input to the tool.\"\n",
|
510 |
+
"# )\n",
|
511 |
+
"# )\n",
|
512 |
+
"# )"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": null,
|
518 |
+
"id": "a5822b1d-32ef-4b68-8629-a727ff51cd0a",
|
519 |
+
"metadata": {},
|
520 |
+
"outputs": [],
|
521 |
+
"source": []
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"cell_type": "code",
|
525 |
+
"execution_count": null,
|
526 |
+
"id": "2a1235da-a379-4055-8bcf-4b21c91c9fb0",
|
527 |
+
"metadata": {},
|
528 |
+
"outputs": [],
|
529 |
+
"source": [
|
530 |
+
"agent = OpenAIAgent.from_tools([multiply_tool, \n",
|
531 |
+
" add_tool, \n",
|
532 |
+
" hi_query_tool, \n",
|
533 |
+
" get_qna_question_tool], llm=llm, verbose=True)"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"cell_type": "code",
|
538 |
+
"execution_count": null,
|
539 |
+
"id": "05b65cbd-d15c-4909-b383-50b13f64e535",
|
540 |
+
"metadata": {},
|
541 |
+
"outputs": [],
|
542 |
+
"source": []
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"cell_type": "code",
|
546 |
+
"execution_count": null,
|
547 |
+
"id": "63332a44-9441-4f49-85a2-934e2c55a362",
|
548 |
+
"metadata": {},
|
549 |
+
"outputs": [],
|
550 |
+
"source": [
|
551 |
+
"res = agent.chat(\"what is the healthcare philosophy in singapore\", tool_choice=\"auto\")\n",
|
552 |
+
"res.response"
|
553 |
+
]
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"cell_type": "code",
|
557 |
+
"execution_count": null,
|
558 |
+
"id": "de387041-706c-4be8-ab31-fe8bd8b16bc1",
|
559 |
+
"metadata": {},
|
560 |
+
"outputs": [],
|
561 |
+
"source": []
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": null,
|
566 |
+
"id": "eb8a8676-c070-4652-8c00-436be3135c12",
|
567 |
+
"metadata": {},
|
568 |
+
"outputs": [],
|
569 |
+
"source": [
|
570 |
+
"res = agent.chat(message=\"I am interested in 4th chapter, can you test my understanding of this chapter?\",\n",
|
571 |
+
" tool_choice=\"auto\")\n",
|
572 |
+
"res.response"
|
573 |
+
]
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"cell_type": "code",
|
577 |
+
"execution_count": null,
|
578 |
+
"id": "81709cbf-9a5e-482f-ae6a-ba361b8219dc",
|
579 |
+
"metadata": {},
|
580 |
+
"outputs": [],
|
581 |
+
"source": []
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"cell_type": "code",
|
585 |
+
"execution_count": null,
|
586 |
+
"id": "adf26268-e40a-4ebd-a737-6b203ddc4444",
|
587 |
+
"metadata": {},
|
588 |
+
"outputs": [],
|
589 |
+
"source": [
|
590 |
+
"res = agent.stream_chat(\"what is the healthcare philosophy in singapore\", tool_choice=\"auto\")\n",
|
591 |
+
"for r in res.response_gen:\n",
|
592 |
+
" print(r, end=\"\")"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"cell_type": "code",
|
597 |
+
"execution_count": null,
|
598 |
+
"id": "c4f2df51-553f-493d-874c-662ecb499e36",
|
599 |
+
"metadata": {},
|
600 |
+
"outputs": [],
|
601 |
+
"source": []
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"cell_type": "code",
|
605 |
+
"execution_count": null,
|
606 |
+
"id": "4bf66e59-a394-4e6b-b7d5-af6b1612c97b",
|
607 |
+
"metadata": {},
|
608 |
+
"outputs": [],
|
609 |
+
"source": [
|
610 |
+
"res = agent.stream_chat(message=\"I am interested in 4th chapter, can you test my understanding of this chapter?\",\n",
|
611 |
+
" tool_choice=\"auto\")\n",
|
612 |
+
"for r in res.response_gen:\n",
|
613 |
+
" print(r, end=\"\")"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"cell_type": "code",
|
618 |
+
"execution_count": null,
|
619 |
+
"id": "540c0f71-048a-4a64-9818-e2b1cffc0db7",
|
620 |
+
"metadata": {},
|
621 |
+
"outputs": [],
|
622 |
+
"source": []
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"cell_type": "code",
|
626 |
+
"execution_count": null,
|
627 |
+
"id": "fbeabf28-30f9-4d7f-a4b9-21cd08a9b128",
|
628 |
+
"metadata": {},
|
629 |
+
"outputs": [],
|
630 |
+
"source": [
|
631 |
+
"res = agent.stream_chat(\"what is the result of 328123 + 2891230\", tool_choice=\"auto\")\n",
|
632 |
+
"for r in res.response_gen:\n",
|
633 |
+
" print(r, end=\"\")"
|
634 |
+
]
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"cell_type": "code",
|
638 |
+
"execution_count": null,
|
639 |
+
"id": "19b7e12c-0729-4181-acce-53a3a95b67b8",
|
640 |
+
"metadata": {},
|
641 |
+
"outputs": [],
|
642 |
+
"source": [
|
643 |
+
"328123 + 2891230"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"execution_count": null,
|
649 |
+
"id": "bca4c0b2-5165-4943-af1f-d3168ee88fcd",
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [],
|
652 |
+
"source": []
|
653 |
+
}
|
654 |
+
],
|
655 |
+
"metadata": {
|
656 |
+
"kernelspec": {
|
657 |
+
"display_name": "Python 3 (ipykernel)",
|
658 |
+
"language": "python",
|
659 |
+
"name": "python3"
|
660 |
+
},
|
661 |
+
"language_info": {
|
662 |
+
"codemirror_mode": {
|
663 |
+
"name": "ipython",
|
664 |
+
"version": 3
|
665 |
+
},
|
666 |
+
"file_extension": ".py",
|
667 |
+
"mimetype": "text/x-python",
|
668 |
+
"name": "python",
|
669 |
+
"nbconvert_exporter": "python",
|
670 |
+
"pygments_lexer": "ipython3",
|
671 |
+
"version": "3.9.18"
|
672 |
+
}
|
673 |
+
},
|
674 |
+
"nbformat": 4,
|
675 |
+
"nbformat_minor": 5
|
676 |
+
}
|
notebooks/{fine-tune-and-persist-vector-store.ipynb β 006_fine-tune-and-persist-vector-store.ipynb}
RENAMED
File without changes
|
notebooks/qna_prompting_with_pydantic.ipynb
DELETED
@@ -1,114 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"id": "6f0f5f02-c8e9-43a9-853d-12bb3c19dbe8",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"from pydantic import BaseModel"
|
11 |
-
]
|
12 |
-
},
|
13 |
-
{
|
14 |
-
"cell_type": "code",
|
15 |
-
"execution_count": null,
|
16 |
-
"id": "94244a1e-e55a-4954-885e-4558797c6fe3",
|
17 |
-
"metadata": {},
|
18 |
-
"outputs": [],
|
19 |
-
"source": [
|
20 |
-
"from llama_index.llms import OpenAI"
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": null,
|
26 |
-
"id": "641f36c7-0aa3-4146-9840-bfb0d4d78b4d",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [],
|
29 |
-
"source": [
|
30 |
-
"from llama_index.core.tools import BaseTool, FunctionTool"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"cell_type": "code",
|
35 |
-
"execution_count": null,
|
36 |
-
"id": "cb20cd13-20fd-4303-acde-b7abe0b48e39",
|
37 |
-
"metadata": {},
|
38 |
-
"outputs": [],
|
39 |
-
"source": []
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"cell_type": "code",
|
43 |
-
"execution_count": null,
|
44 |
-
"id": "ab4d1a52-84be-492f-8275-3da20d854cb6",
|
45 |
-
"metadata": {},
|
46 |
-
"outputs": [],
|
47 |
-
"source": [
|
48 |
-
"class Song(BaseModel):\n",
|
49 |
-
" \"\"\"A song with name and artist\"\"\"\n",
|
50 |
-
"\n",
|
51 |
-
" name: str\n",
|
52 |
-
" artist: str"
|
53 |
-
]
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"cell_type": "code",
|
57 |
-
"execution_count": null,
|
58 |
-
"id": "a5822b1d-32ef-4b68-8629-a727ff51cd0a",
|
59 |
-
"metadata": {},
|
60 |
-
"outputs": [],
|
61 |
-
"source": []
|
62 |
-
},
|
63 |
-
{
|
64 |
-
"cell_type": "code",
|
65 |
-
"execution_count": null,
|
66 |
-
"id": "63332a44-9441-4f49-85a2-934e2c55a362",
|
67 |
-
"metadata": {},
|
68 |
-
"outputs": [],
|
69 |
-
"source": [
|
70 |
-
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": null,
|
76 |
-
"id": "ef0d7d67-9855-47ea-8569-7bfb20b03a07",
|
77 |
-
"metadata": {},
|
78 |
-
"outputs": [],
|
79 |
-
"source": [
|
80 |
-
"response = OpenAI().complete(\"Generate a song\", tools=[song_fn])\n",
|
81 |
-
"tool_calls = response.additional_kwargs[\"tool_calls\"]"
|
82 |
-
]
|
83 |
-
},
|
84 |
-
{
|
85 |
-
"cell_type": "code",
|
86 |
-
"execution_count": null,
|
87 |
-
"id": "bca4c0b2-5165-4943-af1f-d3168ee88fcd",
|
88 |
-
"metadata": {},
|
89 |
-
"outputs": [],
|
90 |
-
"source": []
|
91 |
-
}
|
92 |
-
],
|
93 |
-
"metadata": {
|
94 |
-
"kernelspec": {
|
95 |
-
"display_name": "Python 3 (ipykernel)",
|
96 |
-
"language": "python",
|
97 |
-
"name": "python3"
|
98 |
-
},
|
99 |
-
"language_info": {
|
100 |
-
"codemirror_mode": {
|
101 |
-
"name": "ipython",
|
102 |
-
"version": 3
|
103 |
-
},
|
104 |
-
"file_extension": ".py",
|
105 |
-
"mimetype": "text/x-python",
|
106 |
-
"name": "python",
|
107 |
-
"nbconvert_exporter": "python",
|
108 |
-
"pygments_lexer": "ipython3",
|
109 |
-
"version": "3.9.18"
|
110 |
-
}
|
111 |
-
},
|
112 |
-
"nbformat": 4,
|
113 |
-
"nbformat_minor": 5
|
114 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qna_prompting.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
from pydantic import BaseModel, Field
|
3 |
+
from llama_index.core.tools import FunctionTool
|
4 |
+
|
5 |
+
|
6 |
+
db_path = "./database/mock_qna.db"
|
7 |
+
description = """
|
8 |
+
Use this tool to extract the chapter information from the body of the input text,
|
9 |
+
when user wants to learn more about a particular chapter and requested to be asked
|
10 |
+
with a question to test his/her understanding.
|
11 |
+
The format of the function argument looks as follow:
|
12 |
+
It should be in the format with `Chapter_` as prefix.
|
13 |
+
Example 1: `Chapter_1` for first chapter
|
14 |
+
Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
|
15 |
+
Example 3: `Chapter_5` for fifth chapter
|
16 |
+
Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
|
17 |
+
"""
|
18 |
+
|
19 |
+
class QnA_Model(BaseModel):
|
20 |
+
chapter_n: str = Field(...,
|
21 |
+
pattern=r'^Chapter_\d*$',
|
22 |
+
description=(
|
23 |
+
"which chapter to extract, the format of this function argumet"
|
24 |
+
"is with `Chapter_` as prefix concatenated with chapter number"
|
25 |
+
"in integer. For example, `Chapter_2`, `Chapter_10`.")
|
26 |
+
)
|
27 |
+
|
28 |
+
def get_qna_question(chapter_n: str) -> str:
|
29 |
+
"""
|
30 |
+
Use this tool to extract the chapter information from the body of the input text,
|
31 |
+
the format looks as follow:
|
32 |
+
The output should be in the format with `Chapter_` as prefix.
|
33 |
+
Example 1: `Chapter_1` for first chapter
|
34 |
+
Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
|
35 |
+
Example 3: `Chapter_5` for fifth chapter
|
36 |
+
Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
|
37 |
+
"""
|
38 |
+
con = sqlite3.connect(db_path)
|
39 |
+
cur = con.cursor()
|
40 |
+
|
41 |
+
sql_string = f"""SELECT id, question, option_1, option_2, option_3, option_4, correct_answer
|
42 |
+
FROM qna_tbl
|
43 |
+
WHERE chapter='{chapter_n}'
|
44 |
+
"""
|
45 |
+
res = cur.execute(sql_string)
|
46 |
+
result = res.fetchone()
|
47 |
+
|
48 |
+
id = result[0]
|
49 |
+
question = result[1]
|
50 |
+
option_1 = result[2]
|
51 |
+
option_2 = result[3]
|
52 |
+
option_3 = result[4]
|
53 |
+
option_4 = result[5]
|
54 |
+
c_answer = result[6]
|
55 |
+
|
56 |
+
qna_str = "Question: \n" + \
|
57 |
+
"========= \n" + \
|
58 |
+
question.replace("\\n", "\n") + "\n" + \
|
59 |
+
"A) " + option_1 + "\n" + \
|
60 |
+
"B) " + option_2 + "\n" + \
|
61 |
+
"C) " + option_3 + "\n" + \
|
62 |
+
"D) " + option_4
|
63 |
+
|
64 |
+
con.close()
|
65 |
+
|
66 |
+
return qna_str
|
67 |
+
|
68 |
+
get_qna_question_tool = FunctionTool.from_defaults(
|
69 |
+
fn=get_qna_question,
|
70 |
+
name="Extract_Question",
|
71 |
+
description=description,
|
72 |
+
fn_schema=QnA_Model
|
73 |
+
)
|
requirements.txt
CHANGED
@@ -101,7 +101,19 @@ langchain==0.0.354
|
|
101 |
langchain-community==0.0.8
|
102 |
langchain-core==0.1.5
|
103 |
langsmith==0.0.77
|
104 |
-
llama-index==0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
Mako==1.3.0
|
106 |
Markdown==3.5.1
|
107 |
markdown-it-py==3.0.0
|
@@ -131,7 +143,7 @@ notebook==7.0.6
|
|
131 |
notebook_shim==0.2.3
|
132 |
numpy==1.26.2
|
133 |
oauthlib==3.2.2
|
134 |
-
onnxruntime==1.
|
135 |
openai==1.6.1
|
136 |
opentelemetry-api==1.22.0
|
137 |
opentelemetry-exporter-otlp-proto-common==1.22.0
|
@@ -168,8 +180,10 @@ pydantic_core==2.14.6
|
|
168 |
pydeck==0.8.1b0
|
169 |
Pygments==2.17.2
|
170 |
pymdown-extensions==10.7
|
|
|
|
|
171 |
pyparsing==3.1.1
|
172 |
-
pypdf==
|
173 |
PyPika==0.48.9
|
174 |
pyproject_hooks==1.0.0
|
175 |
python-dateutil==2.8.2
|
@@ -222,7 +236,7 @@ terminado==0.18.0
|
|
222 |
threadpoolctl==3.2.0
|
223 |
tiktoken==0.5.2
|
224 |
tinycss2==1.2.1
|
225 |
-
tokenizers==0.15.
|
226 |
toml==0.10.2
|
227 |
tomli==2.0.1
|
228 |
toolz==0.12.0
|
@@ -230,7 +244,7 @@ torch==2.1.2
|
|
230 |
tornado==6.4
|
231 |
tqdm==4.66.1
|
232 |
traitlets==5.14.0
|
233 |
-
transformers==4.
|
234 |
trulens==0.13.4
|
235 |
trulens-eval==0.20.0
|
236 |
typer==0.9.0
|
|
|
101 |
langchain-community==0.0.8
|
102 |
langchain-core==0.1.5
|
103 |
langsmith==0.0.77
|
104 |
+
llama-index==0.10.1
|
105 |
+
llama-index-agent-openai==0.1.1
|
106 |
+
llama-index-core==0.10.1
|
107 |
+
llama-index-embeddings-huggingface==0.1.1
|
108 |
+
llama-index-embeddings-openai==0.1.1
|
109 |
+
llama-index-legacy==0.9.48
|
110 |
+
llama-index-llms-openai==0.1.1
|
111 |
+
llama-index-multi-modal-llms-openai==0.1.1
|
112 |
+
llama-index-program-openai==0.1.1
|
113 |
+
llama-index-question-gen-openai==0.1.1
|
114 |
+
llama-index-readers-file==0.1.2
|
115 |
+
llama-index-vector-stores-chroma==0.1.1
|
116 |
+
lxml==5.1.0
|
117 |
Mako==1.3.0
|
118 |
Markdown==3.5.1
|
119 |
markdown-it-py==3.0.0
|
|
|
143 |
notebook_shim==0.2.3
|
144 |
numpy==1.26.2
|
145 |
oauthlib==3.2.2
|
146 |
+
onnxruntime==1.17.0
|
147 |
openai==1.6.1
|
148 |
opentelemetry-api==1.22.0
|
149 |
opentelemetry-exporter-otlp-proto-common==1.22.0
|
|
|
180 |
pydeck==0.8.1b0
|
181 |
Pygments==2.17.2
|
182 |
pymdown-extensions==10.7
|
183 |
+
PyMuPDF==1.23.22
|
184 |
+
PyMuPDFb==1.23.22
|
185 |
pyparsing==3.1.1
|
186 |
+
pypdf==4.0.1
|
187 |
PyPika==0.48.9
|
188 |
pyproject_hooks==1.0.0
|
189 |
python-dateutil==2.8.2
|
|
|
236 |
threadpoolctl==3.2.0
|
237 |
tiktoken==0.5.2
|
238 |
tinycss2==1.2.1
|
239 |
+
tokenizers==0.15.2
|
240 |
toml==0.10.2
|
241 |
tomli==2.0.1
|
242 |
toolz==0.12.0
|
|
|
244 |
tornado==6.4
|
245 |
tqdm==4.66.1
|
246 |
traitlets==5.14.0
|
247 |
+
transformers==4.37.2
|
248 |
trulens==0.13.4
|
249 |
trulens-eval==0.20.0
|
250 |
typer==0.9.0
|
streamlit_app.py
CHANGED
@@ -5,21 +5,26 @@ import os
|
|
5 |
import pandas as pd
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
-
import nest_asyncio
|
9 |
|
10 |
import chromadb
|
11 |
-
from llama_index import (
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
from llama_index.
|
18 |
-
from llama_index.
|
19 |
-
from llama_index.
|
|
|
|
|
|
|
|
|
20 |
|
21 |
from vision_api import get_transcribed_text
|
|
|
22 |
|
|
|
23 |
nest_asyncio.apply()
|
24 |
|
25 |
# App title
|
@@ -27,6 +32,7 @@ st.set_page_config(page_title="π¬ Open AI Chatbot")
|
|
27 |
openai_api = os.getenv("OPENAI_API_KEY")
|
28 |
|
29 |
# "./raw_documents/HI_Knowledge_Base.pdf"
|
|
|
30 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
31 |
"./raw_documents/qna.txt"]
|
32 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
@@ -111,7 +117,7 @@ def clear_chat_history():
|
|
111 |
embedding_model=embedding_model,
|
112 |
fine_tuned_path=fine_tuned_path,
|
113 |
system_content=system_content,
|
114 |
-
|
115 |
chat_engine.reset()
|
116 |
|
117 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
@@ -143,59 +149,81 @@ def get_embedding_model(model_name, fine_tuned_path=None):
|
|
143 |
@st.cache_resource
|
144 |
def get_query_engine(input_files, llm_model, temperature,
|
145 |
embedding_model, fine_tuned_path,
|
146 |
-
system_content,
|
147 |
|
148 |
llm = get_llm_object(llm_model, temperature)
|
149 |
embedded_model = get_embedding_model(
|
150 |
model_name=embedding_model,
|
151 |
fine_tuned_path=fine_tuned_path
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
if os.path.exists(persisted_path):
|
159 |
print("loading from vector database - chroma")
|
160 |
-
db = chromadb.PersistentClient(path=
|
161 |
chroma_collection = db.get_or_create_collection("quickstart")
|
162 |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
163 |
-
storage_context = StorageContext.from_defaults(
|
164 |
-
|
165 |
-
)
|
166 |
index = VectorStoreIndex.from_vector_store(
|
167 |
-
vector_store=vector_store,
|
168 |
-
service_context=service_context,
|
169 |
storage_context=storage_context
|
170 |
)
|
171 |
else:
|
172 |
-
print("create
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
llm_model=selected_model,
|
191 |
temperature=temperature,
|
192 |
embedding_model=embedding_model,
|
193 |
fine_tuned_path=fine_tuned_path,
|
194 |
system_content=system_content,
|
195 |
-
|
196 |
|
197 |
# st.session_state.messages
|
198 |
-
response =
|
199 |
return response
|
200 |
|
201 |
def handle_feedback(user_response):
|
@@ -256,13 +284,18 @@ if prompt := st.chat_input(disabled=not openai_api):
|
|
256 |
# Retrieve text prompt from image submission
|
257 |
if prompt is None and \
|
258 |
st.session_state.messages[-1]["role"] == "admin":
|
|
|
259 |
prompt = st.session_state.messages[-1]["content"]
|
260 |
|
261 |
# Generate a new response if last message is not from assistant
|
262 |
if st.session_state.messages[-1]["role"] != "assistant":
|
263 |
with st.chat_message("assistant"):
|
264 |
with st.spinner("Thinking..."):
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
placeholder = st.empty()
|
267 |
full_response = ""
|
268 |
for token in response.response_gen:
|
|
|
5 |
import pandas as pd
|
6 |
import base64
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
import chromadb
|
10 |
+
from llama_index.core import (
|
11 |
+
VectorStoreIndex,
|
12 |
+
SimpleDirectoryReader,
|
13 |
+
StorageContext,
|
14 |
+
Document
|
15 |
+
)
|
16 |
+
from llama_index.vector_stores.chroma.base import ChromaVectorStore
|
17 |
+
from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding
|
18 |
+
from llama_index.llms.openai import OpenAI
|
19 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
20 |
+
from llama_index.core.tools import QueryEngineTool
|
21 |
+
from llama_index.agent.openai import OpenAIAgent
|
22 |
+
from llama_index.core import Settings
|
23 |
|
24 |
from vision_api import get_transcribed_text
|
25 |
+
from qna_prompting import get_qna_question_tool
|
26 |
|
27 |
+
import nest_asyncio
|
28 |
nest_asyncio.apply()
|
29 |
|
30 |
# App title
|
|
|
32 |
openai_api = os.getenv("OPENAI_API_KEY")
|
33 |
|
34 |
# "./raw_documents/HI_Knowledge_Base.pdf"
|
35 |
+
image_prompt = False
|
36 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
37 |
"./raw_documents/qna.txt"]
|
38 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
|
|
117 |
embedding_model=embedding_model,
|
118 |
fine_tuned_path=fine_tuned_path,
|
119 |
system_content=system_content,
|
120 |
+
persisted_vector_db=persisted_vector_db)
|
121 |
chat_engine.reset()
|
122 |
|
123 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
|
|
149 |
@st.cache_resource
|
150 |
def get_query_engine(input_files, llm_model, temperature,
|
151 |
embedding_model, fine_tuned_path,
|
152 |
+
system_content, persisted_vector_db):
|
153 |
|
154 |
llm = get_llm_object(llm_model, temperature)
|
155 |
embedded_model = get_embedding_model(
|
156 |
model_name=embedding_model,
|
157 |
fine_tuned_path=fine_tuned_path
|
158 |
)
|
159 |
+
Settings.llm = llm
|
160 |
+
Settings.chunk_size = 1024
|
161 |
+
Settings.embed_model = embedded_model
|
162 |
+
|
163 |
+
if os.path.exists(persisted_vector_db):
|
|
|
164 |
print("loading from vector database - chroma")
|
165 |
+
db = chromadb.PersistentClient(path=persisted_vector_db)
|
166 |
chroma_collection = db.get_or_create_collection("quickstart")
|
167 |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
168 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
169 |
+
|
|
|
170 |
index = VectorStoreIndex.from_vector_store(
|
171 |
+
vector_store=vector_store,
|
|
|
172 |
storage_context=storage_context
|
173 |
)
|
174 |
else:
|
175 |
+
print("create new chroma vector database..")
|
176 |
+
documents = SimpleDirectoryReader(input_files=input_files).load_data()
|
177 |
+
|
178 |
+
db = chromadb.PersistentClient(path=persisted_vector_db)
|
179 |
+
chroma_collection = db.get_or_create_collection("quickstart")
|
180 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
181 |
+
|
182 |
+
nodes = Settings.node_parser.get_nodes_from_documents(documents)
|
183 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
184 |
+
storage_context.docstore.add_documents(nodes)
|
185 |
+
|
186 |
+
index = VectorStoreIndex(nodes, storage_context=storage_context)
|
187 |
|
188 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
189 |
+
hi_content_engine = index.as_query_engine(
|
190 |
+
memory=memory,
|
191 |
+
system_prompt=system_content,
|
192 |
+
similarity_top_k=3,
|
193 |
+
streaming=True
|
194 |
)
|
195 |
|
196 |
+
hi_query_tool = QueryEngineTool.from_defaults(
|
197 |
+
query_engine=hi_content_engine,
|
198 |
+
name="vector_tool",
|
199 |
+
description=(
|
200 |
+
"Provides information about Health Insurance landscape in Singapore. "
|
201 |
+
"Use a detailed plain text question as input to the tool."
|
202 |
+
)
|
203 |
+
)
|
204 |
+
agent = OpenAIAgent.from_tools(tools=[
|
205 |
+
hi_query_tool,
|
206 |
+
get_qna_question_tool
|
207 |
+
],
|
208 |
+
llm=llm,
|
209 |
+
verbose=True)
|
210 |
+
print("loaded AI agent, let's begin the chat!")
|
211 |
+
print("="*50)
|
212 |
+
print("")
|
213 |
+
|
214 |
+
return agent
|
215 |
+
|
216 |
+
def generate_llm_response(prompt_input, tool_choice="auto"):
|
217 |
+
chat_agent = get_query_engine(input_files=input_files,
|
218 |
llm_model=selected_model,
|
219 |
temperature=temperature,
|
220 |
embedding_model=embedding_model,
|
221 |
fine_tuned_path=fine_tuned_path,
|
222 |
system_content=system_content,
|
223 |
+
persisted_vector_db=persisted_vector_db)
|
224 |
|
225 |
# st.session_state.messages
|
226 |
+
response = chat_agent.stream_chat(prompt_input, tool_choice=tool_choice)
|
227 |
return response
|
228 |
|
229 |
def handle_feedback(user_response):
|
|
|
284 |
# Retrieve text prompt from image submission
|
285 |
if prompt is None and \
|
286 |
st.session_state.messages[-1]["role"] == "admin":
|
287 |
+
image_prompt = True
|
288 |
prompt = st.session_state.messages[-1]["content"]
|
289 |
|
290 |
# Generate a new response if last message is not from assistant
|
291 |
if st.session_state.messages[-1]["role"] != "assistant":
|
292 |
with st.chat_message("assistant"):
|
293 |
with st.spinner("Thinking..."):
|
294 |
+
if image_prompt:
|
295 |
+
response = generate_llm_response(prompt, tool_choice="vector_tool")
|
296 |
+
image_prompt = False
|
297 |
+
else:
|
298 |
+
response = generate_llm_response(prompt, tool_choice="auto")
|
299 |
placeholder = st.empty()
|
300 |
full_response = ""
|
301 |
for token in response.response_gen:
|