ragtest-sakimilo / streamlit_app.py
lingyit1108's picture
to implement rag in the streamlit chatbot app
47e9340
raw
history blame
7.22 kB
import streamlit as st
import os
import pandas as pd
import openai
# from openai import OpenAI
from llama_index.llms import OpenAI
from llama_index import SimpleDirectoryReader
from llama_index import Document
from llama_index import VectorStoreIndex
from llama_index import ServiceContext
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index.memory import ChatMemoryBuffer
import pkg_resources
import shutil
import main
### To trigger trulens evaluation
main.main()
### Finally, start streamlit app
leaderboard_path = pkg_resources.resource_filename(
"trulens_eval", "Leaderboard.py"
)
evaluation_path = pkg_resources.resource_filename(
"trulens_eval", "pages/Evaluations.py"
)
ux_path = pkg_resources.resource_filename(
"trulens_eval", "ux"
)
os.makedirs("./pages", exist_ok=True)
shutil.copyfile(leaderboard_path, os.path.join("./pages", "1_Leaderboard.py"))
shutil.copyfile(evaluation_path, os.path.join("./pages", "2_Evaluations.py"))
if os.path.exists("./ux"):
shutil.rmtree("./ux")
shutil.copytree(ux_path, "./ux")
# App title
st.set_page_config(page_title="πŸ’¬ Open AI Chatbot")
openai_api = os.getenv("OPENAI_API_KEY")
# "./raw_documents/HI_Knowledge_Base.pdf"
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf"]
embedding_model = "BAAI/bge-small-en-v1.5"
system_content = ("You are a helpful study assistant. "
"You do not respond as 'User' or pretend to be 'User'. "
"You only respond once as 'Assistant'."
)
data_df = pd.DataFrame(
{
"Completion": [30, 40, 100, 10],
}
)
data_df.index = ["Chapter 1", "Chapter 2", "Chapter 3", "Chapter 4"]
# Replicate Credentials
with st.sidebar:
st.title("πŸ’¬ Open AI Chatbot")
st.write("This chatbot is created using the GPT model from Open AI.")
if openai_api:
pass
elif "OPENAI_API_KEY" in st.secrets:
st.success("API key already provided!", icon="βœ…")
openai_api = st.secrets["OPENAI_API_KEY"]
else:
openai_api = st.text_input("Enter OpenAI API token:", type="password")
if not (openai_api.startswith("sk-") and len(openai_api)==51):
st.warning("Please enter your credentials!", icon="⚠️")
else:
st.success("Proceed to entering your prompt message!", icon="πŸ‘‰")
### for streamlit purpose
os.environ["OPENAI_API_KEY"] = openai_api
st.subheader("Models and parameters")
selected_model = st.sidebar.selectbox("Choose an OpenAI model",
["gpt-3.5-turbo-1106", "gpt-4-1106-preview"],
key="selected_model")
temperature = st.sidebar.slider("temperature", min_value=0.01, max_value=2.0,
value=0.1, step=0.01)
st.data_editor(
data_df,
column_config={
"Completion": st.column_config.ProgressColumn(
"Completion %",
help="Percentage of content covered",
format="%.1f%%",
min_value=0,
max_value=100,
),
},
hide_index=False,
)
st.markdown("πŸ“– Reach out to SakiMilo to learn how to create this app!")
if "init" not in st.session_state.keys():
st.session_state.init = {"warm_start": "No"}
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant",
"content": "How may I assist you today?"}]
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
system_content=system_content)
chat_engine.reset()
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
@st.cache_resource
def get_document_object(input_files):
documents = SimpleDirectoryReader(input_files=input_files).load_data()
document = Document(text="\n\n".join([doc.text for doc in documents]))
return document
@st.cache_resource
def get_llm_object(selected_model, temperature):
llm = OpenAI(model=selected_model, temperature=temperature)
return llm
@st.cache_resource
def get_embedding_model(model_name):
embed_model = HuggingFaceEmbedding(model_name=model_name)
return embed_model
@st.cache_resource
def get_query_engine(input_files, llm_model, temperature,
embedding_model, system_content):
document = get_document_object(input_files)
llm = get_llm_object(llm_model, temperature)
embedded_model = get_embedding_model(embedding_model)
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embedded_model)
index = VectorStoreIndex.from_documents([document], service_context=service_context)
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
# chat_engine = index.as_query_engine(streaming=True)
chat_engine = index.as_chat_engine(
chat_mode="context",
memory=memory,
system_prompt=system_content
)
return chat_engine
def generate_llm_response(prompt_input):
chat_engine = get_query_engine(input_files=input_files,
llm_model=selected_model,
temperature=temperature,
embedding_model=embedding_model,
system_content=system_content)
# st.session_state.messages
response = chat_engine.stream_chat(prompt_input)
return response
# Warm start
if st.session_state.init["warm_start"] == "No":
clear_chat_history()
st.session_state.init["warm_start"] = "Yes"
# User-provided prompt
if prompt := st.chat_input(disabled=not openai_api):
client = OpenAI()
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
# response = generate_llm_response(client, prompt)
response = generate_llm_response(prompt)
placeholder = st.empty()
full_response = ""
for token in response.response_gen:
full_response += token
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)