|
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image |
|
import torch |
|
import os |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except: |
|
pass |
|
|
|
from PIL import Image |
|
import numpy as np |
|
import gradio as gr |
|
import psutil |
|
import time |
|
import math |
|
|
|
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) |
|
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() |
|
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() |
|
device = torch.device( |
|
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" |
|
) |
|
torch_device = device |
|
torch_dtype = torch.float16 |
|
|
|
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") |
|
print(f"TORCH_COMPILE: {TORCH_COMPILE}") |
|
print(f"device: {device}") |
|
|
|
if mps_available: |
|
device = torch.device("mps") |
|
torch_device = "cpu" |
|
torch_dtype = torch.float32 |
|
|
|
if SAFETY_CHECKER == "True": |
|
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( |
|
"stabilityai/sdxl-turbo", |
|
torch_dtype=torch_dtype, |
|
variant="fp16" if torch_dtype == torch.float16 else "fp32", |
|
) |
|
t2i_pipe = AutoPipelineForText2Image.from_pretrained( |
|
"stabilityai/sdxl-turbo", |
|
torch_dtype=torch_dtype, |
|
variant="fp16" if torch_dtype == torch.float16 else "fp32", |
|
) |
|
else: |
|
i2i_pipe = AutoPipelineForImage2Image.from_pretrained( |
|
"stabilityai/sdxl-turbo", |
|
safety_checker=None, |
|
torch_dtype=torch_dtype, |
|
variant="fp16" if torch_dtype == torch.float16 else "fp32", |
|
) |
|
t2i_pipe = AutoPipelineForText2Image.from_pretrained( |
|
"stabilityai/sdxl-turbo", |
|
safety_checker=None, |
|
torch_dtype=torch_dtype, |
|
variant="fp16" if torch_dtype == torch.float16 else "fp32", |
|
) |
|
|
|
|
|
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) |
|
t2i_pipe.set_progress_bar_config(disable=True) |
|
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device) |
|
i2i_pipe.set_progress_bar_config(disable=True) |
|
|
|
|
|
def resize_crop(image, size=512): |
|
image = image.convert("RGB") |
|
w, h = image.size |
|
image = image.resize((size, int(size * (h / w))), Image.BICUBIC) |
|
return image |
|
|
|
|
|
async def predict(init_image, prompt, strength, steps, seed=1231231): |
|
if init_image is not None: |
|
init_image = resize_crop(init_image) |
|
generator = torch.manual_seed(seed) |
|
last_time = time.time() |
|
|
|
if int(steps * strength) < 1: |
|
steps = math.ceil(1 / max(0.10, strength)) |
|
|
|
results = i2i_pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
generator=generator, |
|
num_inference_steps=steps, |
|
guidance_scale=0.0, |
|
strength=strength, |
|
width=512, |
|
height=512, |
|
output_type="pil", |
|
) |
|
else: |
|
generator = torch.manual_seed(seed) |
|
last_time = time.time() |
|
results = t2i_pipe( |
|
prompt=prompt, |
|
generator=generator, |
|
num_inference_steps=steps, |
|
guidance_scale=0.0, |
|
width=512, |
|
height=512, |
|
output_type="pil", |
|
) |
|
print(f"Pipe took {time.time() - last_time} seconds") |
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
gr.Warning("NSFW content detected.") |
|
return Image.new("RGB", (512, 512)) |
|
return results.images[0] |
|
|
|
|
|
css = """ |
|
#container{ |
|
margin: 0 auto; |
|
max-width: 80rem; |
|
} |
|
#intro{ |
|
max-width: 100%; |
|
text-align: center; |
|
margin: 0 auto; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
init_image_state = gr.State() |
|
with gr.Column(elem_id="container"): |
|
gr.Markdown( |
|
"""# SDXL Turbo Image to Image/Text to Image |
|
## Unofficial Demo |
|
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo). |
|
**Model**: https://huggingface.co/stabilityai/sdxl-turbo |
|
""", |
|
elem_id="intro", |
|
) |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
placeholder="Insert your prompt here:", |
|
scale=5, |
|
container=False, |
|
) |
|
generate_bt = gr.Button("Generate", scale=1) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image( |
|
sources=["upload", "webcam", "clipboard"], |
|
label="Webcam", |
|
type="pil", |
|
) |
|
with gr.Column(): |
|
image = gr.Image(type="filepath") |
|
with gr.Accordion("Advanced options", open=False): |
|
strength = gr.Slider( |
|
label="Strength", |
|
value=0.7, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.001, |
|
) |
|
steps = gr.Slider( |
|
label="Steps", value=2, minimum=1, maximum=10, step=1 |
|
) |
|
seed = gr.Slider( |
|
randomize=True, |
|
minimum=0, |
|
maximum=12013012031030, |
|
label="Seed", |
|
step=1, |
|
) |
|
|
|
with gr.Accordion("Run with diffusers"): |
|
gr.Markdown( |
|
"""## Running SDXL Turbo with `diffusers` |
|
```bash |
|
pip install diffusers==0.23.1 |
|
``` |
|
```py |
|
from diffusers import DiffusionPipeline |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"stabilityai/sdxl-turbo" |
|
).to("cuda") |
|
results = pipe( |
|
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe", |
|
num_inference_steps=1, |
|
guidance_scale=0.0, |
|
) |
|
imga = results.images[0] |
|
imga.save("image.png") |
|
``` |
|
""" |
|
) |
|
|
|
inputs = [image_input, prompt, strength, steps, seed] |
|
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) |
|
image_input.change( |
|
fn=lambda x: x, |
|
inputs=image_input, |
|
outputs=init_image_state, |
|
show_progress=False, |
|
queue=False, |
|
) |
|
|
|
demo.queue() |
|
demo.launch() |
|
|