Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import spaces | |
import logging | |
from deep_translator import GoogleTranslator | |
import pandas as pd | |
from tqdm import tqdm | |
import urllib | |
from bs4 import BeautifulSoup | |
# Configure logging to write messages to a file | |
logging.basicConfig(filename='app.log', level=logging.ERROR) | |
# Configuration | |
max_seq_length = 2048 | |
dtype = None # Auto detection of dtype | |
load_in_4bit = True # Use 4-bit quantization to reduce memory usage | |
# peft_model_name = "limitedonly41/website_qwen2_7b_2" | |
# peft_model_name = "limitedonly41/website_mistral7b_v02" | |
peft_model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit" | |
# Initialize model and tokenizer variables | |
model = None | |
tokenizer = None | |
def fetch_data(url): | |
headers = { | |
'Accept': '*/*', | |
'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7', | |
'Connection': 'keep-alive', | |
'Referer': f'{url}', | |
'Sec-Fetch-Dest': 'empty', | |
'Sec-Fetch-Mode': 'cors', | |
'Sec-Fetch-Site': 'cross-site', | |
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36', | |
'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"', | |
'sec-ch-ua-mobile': '?0', | |
'sec-ch-ua-platform': '"macOS"', | |
} | |
encoding = 'utf-8' | |
timeout = 10 # Set your desired timeout value in seconds | |
try: | |
# Make the request using urllib | |
req = urllib.request.Request(url, headers=headers) | |
with urllib.request.urlopen(req, timeout=timeout) as response: | |
response_content = response.read() | |
soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding) | |
title = soup.find('title').text | |
description = soup.find('meta', attrs={'name': 'description'}) | |
description = description.get("content") if description and "content" in description.attrs else "" | |
keywords = soup.find('meta', attrs={'name': 'keywords'}) | |
keywords = keywords.get("content") if keywords and "content" in keywords.attrs else "" | |
h1_all = ". ".join(h.text for h in soup.find_all('h1')) | |
paragraphs_all = ". ".join(p.text for p in soup.find_all('p')) | |
h2_all = ". ".join(h.text for h in soup.find_all('h2')) | |
h3_all = ". ".join(h.text for h in soup.find_all('h3')) | |
allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"[:4999] | |
# Clean up the text | |
h1_all = h1_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
h2_all = h2_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
h3_all = h3_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
return { | |
'url': url, | |
'title': title, | |
'description': description, | |
'keywords': keywords, | |
'h1': h1_all, | |
'h2': h2_all, | |
'h3': h3_all, | |
'paragraphs': paragraphs_all, | |
'text': allthecontent | |
} | |
except Exception as e: | |
print(url, e) | |
return { | |
'url': url, | |
'title': None, | |
'description': None, | |
'keywords': None, | |
'h1': None, | |
'h2': None, | |
'h3': None, | |
'paragraphs': None, | |
'text': None | |
} | |
def main(urls): | |
results = [] | |
for url in tqdm(urls): | |
result = fetch_data(url) | |
results.append(result) | |
return results | |
def classify_website(url): | |
from unsloth import FastLanguageModel # Import moved to the top for model loading | |
global model, tokenizer # Declare model and tokenizer as global variables | |
if model is None or tokenizer is None: | |
# Load the model and tokenizer during initialization (in the main process) | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=peft_model_name, | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=load_in_4bit, | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
urls = [url] | |
results_shop = main(urls) | |
# Convert results to DataFrame | |
df_result_train_more = pd.DataFrame(results_shop) | |
text = df_result_train_more['text'][0] | |
translated = GoogleTranslator(source='auto', target='en').translate(text[:4990]) | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
Describe the website text into one word topic: | |
### Input: | |
{} | |
### Response: | |
""" | |
prompt = alpaca_prompt.format(translated) | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
final_answer = summary.split("### Response:")[1].strip() | |
return final_answer | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=classify_website, | |
inputs="text", | |
outputs="text", | |
title="Website Topic", | |
description="Enter a URL to get a topic summary of the website content." | |
) | |
# Launch the interface | |
iface.launch() | |
# import gradio as gr | |
# import asyncio | |
# import requests | |
# from bs4 import BeautifulSoup | |
# import pandas as pd | |
# from tqdm import tqdm | |
# import urllib | |
# from deep_translator import GoogleTranslator | |
# import spaces | |
# # from unsloth import FastLanguageModel | |
# import torch | |
# import re | |
# # Define helper functions | |
# async def fetch_data(url): | |
# headers = { | |
# 'Accept': '*/*', | |
# 'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7', | |
# 'Connection': 'keep-alive', | |
# 'Referer': f'{url}', | |
# 'Sec-Fetch-Dest': 'empty', | |
# 'Sec-Fetch-Mode': 'cors', | |
# 'Sec-Fetch-Site': 'cross-site', | |
# 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36', | |
# 'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"', | |
# 'sec-ch-ua-mobile': '?0', | |
# 'sec-ch-ua-platform': '"macOS"', | |
# } | |
# encoding = 'utf-8' | |
# timeout = 10 | |
# try: | |
# def get_content(): | |
# req = urllib.request.Request(url, headers=headers) | |
# with urllib.request.urlopen(req, timeout=timeout) as response: | |
# return response.read() | |
# response_content = await asyncio.get_event_loop().run_in_executor(None, get_content) | |
# soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding) | |
# title = soup.find('title').text | |
# description = soup.find('meta', attrs={'name': 'description'}) | |
# if description and "content" in description.attrs: | |
# description = description.get("content") | |
# else: | |
# description = "" | |
# keywords = soup.find('meta', attrs={'name': 'keywords'}) | |
# if keywords and "content" in keywords.attrs: | |
# keywords = keywords.get("content") | |
# else: | |
# keywords = "" | |
# h1_all = " ".join(h.text for h in soup.find_all('h1')) | |
# h2_all = " ".join(h.text for h in soup.find_all('h2')) | |
# h3_all = " ".join(h.text for h in soup.find_all('h3')) | |
# paragraphs_all = " ".join(p.text for p in soup.find_all('p')) | |
# allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}" | |
# allthecontent = allthecontent[:4999] | |
# return { | |
# 'url': url, | |
# 'title': title, | |
# 'description': description, | |
# 'keywords': keywords, | |
# 'h1': h1_all, | |
# 'h2': h2_all, | |
# 'h3': h3_all, | |
# 'paragraphs': paragraphs_all, | |
# 'text': allthecontent | |
# } | |
# except Exception as e: | |
# return { | |
# 'url': url, | |
# 'title': None, | |
# 'description': None, | |
# 'keywords': None, | |
# 'h1': None, | |
# 'h2': None, | |
# 'h3': None, | |
# 'paragraphs': None, | |
# 'text': None | |
# } | |
# def concatenate_text(data): | |
# text_parts = [str(data[col]) for col in ['url', 'title', 'description', 'keywords', 'h1', 'h2', 'h3'] if data[col]] | |
# text = ' '.join(text_parts) | |
# text = text.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
# text = re.sub(r'\s{2,}', ' ', text) | |
# return text | |
# def translate_text(text): | |
# try: | |
# text = text[:4990] | |
# translated_text = GoogleTranslator(source='auto', target='en').translate(text) | |
# return translated_text | |
# except Exception as e: | |
# print(f"An error occurred during translation: {e}") | |
# return None | |
# model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit" | |
# # Initialize model and tokenizer variables | |
# model = None | |
# tokenizer = None | |
# @spaces.GPU() | |
# def summarize_url(url): | |
# global model, tokenizer # Declare model and tokenizer as global variables | |
# # Load the model | |
# max_seq_length = 2048 | |
# dtype = None | |
# load_in_4bit = True | |
# if model is None or tokenizer is None: | |
# from unsloth import FastLanguageModel | |
# # Load the model and tokenizer | |
# model, tokenizer = FastLanguageModel.from_pretrained( | |
# model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING | |
# max_seq_length=max_seq_length, | |
# dtype=dtype, | |
# load_in_4bit=load_in_4bit, | |
# ) | |
# FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
# result = asyncio.run(fetch_data(url)) | |
# text = concatenate_text(result) | |
# translated_text = translate_text(text) | |
# if len(translated_text) < 100: | |
# return 'not scraped or short text' | |
# alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
# ### Instruction: | |
# Describe the website text into one word topic: | |
# ### Input: | |
# {} | |
# ### Response: | |
# """ | |
# prompt = alpaca_prompt.format(translated_text) | |
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
# outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True) | |
# summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# final_answer = summary.split("### Response:")[1].strip() | |
# return final_answer | |
# # # Create the Gradio interface within a `Blocks` context, like the working example | |
# # with gr.Blocks() as demo: | |
# # # Add title and description to the interface | |
# # gr.HTML("<h1>Website Summary Generator</h1>") | |
# # gr.HTML("<p>Enter a URL to get a one-word topic summary of the website content..</p>") | |
# # # Define input and output elements | |
# # with gr.Row(): | |
# # prompt = gr.Textbox(label="Enter Website URL", placeholder="https://example.com") | |
# # output_text = gr.Textbox(label="Topic", interactive=False) | |
# # # Add the button to trigger the function | |
# # submit = gr.Button("Classify") | |
# # # Define the interaction between inputs and outputs | |
# # submit.click(fn=summarize_url, inputs=prompt, outputs=output_text) | |
# # # Add the `if __name__ == "__main__":` block to launch the interface | |
# # if __name__ == "__main__": | |
# # demo.launch() | |
# # with gr as demo: | |
# # # Define Gradio interface | |
# # demo = demo.Interface( | |
# # fn=summarize_url, | |
# # inputs="text", | |
# # outputs="text", | |
# # title="Website Summary Generator", | |
# # description="Enter a URL to get a one-word topic summary of the website content." | |
# # ) | |
# # if __name__ == "__main__": | |
# # demo.launch() | |
# # Create a Gradio interface | |
# iface = gr.Interface( | |
# fn=summarize_url, | |
# inputs="text", | |
# outputs="text", | |
# title="Website Summary Generator", | |
# description="Enter a URL to get a one-word topic summary of the website content." | |
# ) | |
# # Launch the interface | |
# iface.launch() | |