Spaces:
Runtime error
Runtime error
import gradio as gr | |
import asyncio | |
import requests | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
from tqdm import tqdm | |
import urllib | |
from deep_translator import GoogleTranslator | |
from unsloth import FastLanguageModel | |
import torch | |
import re | |
# Define helper functions | |
async def fetch_data(url): | |
headers = { | |
'Accept': '*/*', | |
'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7', | |
'Connection': 'keep-alive', | |
'Referer': f'{url}', | |
'Sec-Fetch-Dest': 'empty', | |
'Sec-Fetch-Mode': 'cors', | |
'Sec-Fetch-Site': 'cross-site', | |
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36', | |
'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"', | |
'sec-ch-ua-mobile': '?0', | |
'sec-ch-ua-platform': '"macOS"', | |
} | |
encoding = 'utf-8' | |
timeout = 10 | |
try: | |
def get_content(): | |
req = urllib.request.Request(url, headers=headers) | |
with urllib.request.urlopen(req, timeout=timeout) as response: | |
return response.read() | |
response_content = await asyncio.get_event_loop().run_in_executor(None, get_content) | |
soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding) | |
title = soup.find('title').text | |
description = soup.find('meta', attrs={'name': 'description'}) | |
if description and "content" in description.attrs: | |
description = description.get("content") | |
else: | |
description = "" | |
keywords = soup.find('meta', attrs={'name': 'keywords'}) | |
if keywords and "content" in keywords.attrs: | |
keywords = keywords.get("content") | |
else: | |
keywords = "" | |
h1_all = " ".join(h.text for h in soup.find_all('h1')) | |
h2_all = " ".join(h.text for h in soup.find_all('h2')) | |
h3_all = " ".join(h.text for h in soup.find_all('h3')) | |
paragraphs_all = " ".join(p.text for p in soup.find_all('p')) | |
allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}" | |
allthecontent = allthecontent[:4999] | |
return { | |
'url': url, | |
'title': title, | |
'description': description, | |
'keywords': keywords, | |
'h1': h1_all, | |
'h2': h2_all, | |
'h3': h3_all, | |
'paragraphs': paragraphs_all, | |
'text': allthecontent | |
} | |
except Exception as e: | |
return { | |
'url': url, | |
'title': None, | |
'description': None, | |
'keywords': None, | |
'h1': None, | |
'h2': None, | |
'h3': None, | |
'paragraphs': None, | |
'text': None | |
} | |
def concatenate_text(data): | |
text_parts = [str(data[col]) for col in ['url', 'title', 'description', 'keywords', 'h1', 'h2', 'h3'] if data[col]] | |
text = ' '.join(text_parts) | |
text = text.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
text = re.sub(r'\s{2,}', ' ', text) | |
return text | |
def translate_text(text): | |
try: | |
text = text[:4990] | |
translated_text = GoogleTranslator(source='auto', target='en').translate(text) | |
return translated_text | |
except Exception as e: | |
print(f"An error occurred during translation: {e}") | |
return None | |
def summarize_url(url): | |
# Load the model | |
max_seq_length = 2048 | |
dtype = None | |
load_in_4bit = True | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name="unsloth/mistral-7b-instruct-v0.3-bnb-4bit", | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=load_in_4bit, | |
) | |
# Enable native 2x faster inference | |
FastLanguageModel.for_inference(model) | |
result = asyncio.run(fetch_data(url)) | |
text = concatenate_text(result) | |
translated_text = translate_text(text) | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
Describe the website text into one word topic: | |
### Input: | |
{} | |
### Response: | |
""" | |
prompt = alpaca_prompt.format(translated_text) | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
final_answer = summary.split("### Response:")[1].strip() | |
return final_answer | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=summarize_url, | |
inputs="text", | |
outputs="text", | |
title="Website Summary Generator", | |
description="Enter a URL to get a one-word topic summary of the website content." | |
) | |
# Launch the Gradio app | |
iface.launch() | |