Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import asyncio | |
| import requests | |
| from bs4 import BeautifulSoup | |
| import pandas as pd | |
| from tqdm import tqdm | |
| import urllib | |
| from deep_translator import GoogleTranslator | |
| from unsloth import FastLanguageModel | |
| import torch | |
| import re | |
| # Define helper functions | |
| async def fetch_data(url): | |
| headers = { | |
| 'Accept': '*/*', | |
| 'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7', | |
| 'Connection': 'keep-alive', | |
| 'Referer': f'{url}', | |
| 'Sec-Fetch-Dest': 'empty', | |
| 'Sec-Fetch-Mode': 'cors', | |
| 'Sec-Fetch-Site': 'cross-site', | |
| 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36', | |
| 'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"', | |
| 'sec-ch-ua-mobile': '?0', | |
| 'sec-ch-ua-platform': '"macOS"', | |
| } | |
| encoding = 'utf-8' | |
| timeout = 10 | |
| try: | |
| def get_content(): | |
| req = urllib.request.Request(url, headers=headers) | |
| with urllib.request.urlopen(req, timeout=timeout) as response: | |
| return response.read() | |
| response_content = await asyncio.get_event_loop().run_in_executor(None, get_content) | |
| soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding) | |
| title = soup.find('title').text | |
| description = soup.find('meta', attrs={'name': 'description'}) | |
| if description and "content" in description.attrs: | |
| description = description.get("content") | |
| else: | |
| description = "" | |
| keywords = soup.find('meta', attrs={'name': 'keywords'}) | |
| if keywords and "content" in keywords.attrs: | |
| keywords = keywords.get("content") | |
| else: | |
| keywords = "" | |
| h1_all = " ".join(h.text for h in soup.find_all('h1')) | |
| h2_all = " ".join(h.text for h in soup.find_all('h2')) | |
| h3_all = " ".join(h.text for h in soup.find_all('h3')) | |
| paragraphs_all = " ".join(p.text for p in soup.find_all('p')) | |
| allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}" | |
| allthecontent = allthecontent[:4999] | |
| return { | |
| 'url': url, | |
| 'title': title, | |
| 'description': description, | |
| 'keywords': keywords, | |
| 'h1': h1_all, | |
| 'h2': h2_all, | |
| 'h3': h3_all, | |
| 'paragraphs': paragraphs_all, | |
| 'text': allthecontent | |
| } | |
| except Exception as e: | |
| return { | |
| 'url': url, | |
| 'title': None, | |
| 'description': None, | |
| 'keywords': None, | |
| 'h1': None, | |
| 'h2': None, | |
| 'h3': None, | |
| 'paragraphs': None, | |
| 'text': None | |
| } | |
| def concatenate_text(data): | |
| text_parts = [str(data[col]) for col in ['url', 'title', 'description', 'keywords', 'h1', 'h2', 'h3'] if data[col]] | |
| text = ' '.join(text_parts) | |
| text = text.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ') | |
| text = re.sub(r'\s{2,}', ' ', text) | |
| return text | |
| def translate_text(text): | |
| try: | |
| text = text[:4990] | |
| translated_text = GoogleTranslator(source='auto', target='en').translate(text) | |
| return translated_text | |
| except Exception as e: | |
| print(f"An error occurred during translation: {e}") | |
| return None | |
| def summarize_url(url): | |
| # Load the model | |
| max_seq_length = 2048 | |
| dtype = None | |
| load_in_4bit = True | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name="unsloth/mistral-7b-instruct-v0.3-bnb-4bit", | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=load_in_4bit, | |
| ) | |
| # Enable native 2x faster inference | |
| FastLanguageModel.for_inference(model) | |
| result = asyncio.run(fetch_data(url)) | |
| text = concatenate_text(result) | |
| translated_text = translate_text(text) | |
| alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
| ### Instruction: | |
| Describe the website text into one word topic: | |
| ### Input: | |
| {} | |
| ### Response: | |
| """ | |
| prompt = alpaca_prompt.format(translated_text) | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
| outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True) | |
| summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| final_answer = summary.split("### Response:")[1].strip() | |
| return final_answer | |
| # Define Gradio interface | |
| iface = gr.Interface( | |
| fn=summarize_url, | |
| inputs="text", | |
| outputs="text", | |
| title="Website Summary Generator", | |
| description="Enter a URL to get a one-word topic summary of the website content." | |
| ) | |
| # Launch the Gradio app | |
| iface.launch() | |