Spaces:
Running
Running
Ming Li
commited on
Commit
•
acbc9f8
1
Parent(s):
654fc61
change inference_mode to no_grad to avoid errors
Browse files- image_segmentor.py +1 -1
- model.py +5 -5
image_segmentor.py
CHANGED
@@ -13,7 +13,7 @@ class ImageSegmentor:
|
|
13 |
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
14 |
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
15 |
|
16 |
-
@torch.
|
17 |
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
|
18 |
detect_resolution = kwargs.pop("detect_resolution", 512)
|
19 |
image_resolution = kwargs.pop("image_resolution", 512)
|
|
|
13 |
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
14 |
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
15 |
|
16 |
+
@torch.no_grad()
|
17 |
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
|
18 |
detect_resolution = kwargs.pop("detect_resolution", 512)
|
19 |
image_resolution = kwargs.pop("image_resolution", 512)
|
model.py
CHANGED
@@ -126,7 +126,7 @@ class Model:
|
|
126 |
image=control_image,
|
127 |
).images
|
128 |
|
129 |
-
@torch.
|
130 |
@spaces.GPU(enable_queue=True)
|
131 |
def process_canny(
|
132 |
self,
|
@@ -171,7 +171,7 @@ class Model:
|
|
171 |
]
|
172 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
173 |
|
174 |
-
@torch.
|
175 |
@spaces.GPU(enable_queue=True)
|
176 |
def process_softedge(
|
177 |
self,
|
@@ -238,7 +238,7 @@ class Model:
|
|
238 |
]
|
239 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
240 |
|
241 |
-
@torch.
|
242 |
@spaces.GPU(enable_queue=True)
|
243 |
def process_segmentation(
|
244 |
self,
|
@@ -292,7 +292,7 @@ class Model:
|
|
292 |
]
|
293 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
294 |
|
295 |
-
@torch.
|
296 |
@spaces.GPU(enable_queue=True)
|
297 |
def process_depth(
|
298 |
self,
|
@@ -345,7 +345,7 @@ class Model:
|
|
345 |
]
|
346 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
347 |
|
348 |
-
@torch.
|
349 |
@spaces.GPU(enable_queue=True)
|
350 |
def process_lineart(
|
351 |
self,
|
|
|
126 |
image=control_image,
|
127 |
).images
|
128 |
|
129 |
+
@torch.no_grad()
|
130 |
@spaces.GPU(enable_queue=True)
|
131 |
def process_canny(
|
132 |
self,
|
|
|
171 |
]
|
172 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
173 |
|
174 |
+
@torch.no_grad()
|
175 |
@spaces.GPU(enable_queue=True)
|
176 |
def process_softedge(
|
177 |
self,
|
|
|
238 |
]
|
239 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
240 |
|
241 |
+
@torch.no_grad()
|
242 |
@spaces.GPU(enable_queue=True)
|
243 |
def process_segmentation(
|
244 |
self,
|
|
|
292 |
]
|
293 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
294 |
|
295 |
+
@torch.no_grad()
|
296 |
@spaces.GPU(enable_queue=True)
|
297 |
def process_depth(
|
298 |
self,
|
|
|
345 |
]
|
346 |
return [control_image] * num_images + results + conditions_of_generated_imgs
|
347 |
|
348 |
+
@torch.no_grad()
|
349 |
@spaces.GPU(enable_queue=True)
|
350 |
def process_lineart(
|
351 |
self,
|