remove wrong files
Browse files- pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log +0 -0
- pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log.json +0 -0
- pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/final_model.pth +0 -3
- pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/selfsup_mask-rcnn_swin-b_simmim.py +0 -447
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/final_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7aca88dfee95a9cb04041b5b93a19169aaa3bb14ff12c237042bc981205d85ab
|
3 |
-
size 422177783
|
|
|
|
|
|
|
|
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/selfsup_mask-rcnn_swin-b_simmim.py
DELETED
@@ -1,447 +0,0 @@
|
|
1 |
-
model = dict(
|
2 |
-
type='SelfSupDetector',
|
3 |
-
backbone=dict(
|
4 |
-
type='SelfSupMaskRCNN',
|
5 |
-
backbone=dict(
|
6 |
-
type='SwinTransformer',
|
7 |
-
embed_dims=128,
|
8 |
-
depths=[2, 2, 18, 2],
|
9 |
-
num_heads=[4, 8, 16, 32],
|
10 |
-
window_size=7,
|
11 |
-
mlp_ratio=4,
|
12 |
-
qkv_bias=True,
|
13 |
-
qk_scale=None,
|
14 |
-
drop_rate=0.0,
|
15 |
-
attn_drop_rate=0.0,
|
16 |
-
drop_path_rate=0.2,
|
17 |
-
patch_norm=True,
|
18 |
-
out_indices=(0, 1, 2, 3),
|
19 |
-
with_cp=False,
|
20 |
-
frozen_stages=4,
|
21 |
-
convert_weights=True,
|
22 |
-
init_cfg=dict(
|
23 |
-
type='Pretrained',
|
24 |
-
checkpoint=
|
25 |
-
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth'
|
26 |
-
)),
|
27 |
-
neck=dict(
|
28 |
-
type='FPN',
|
29 |
-
in_channels=[128, 256, 512, 1024],
|
30 |
-
out_channels=256,
|
31 |
-
num_outs=5),
|
32 |
-
rpn_head=dict(
|
33 |
-
type='RPNHead',
|
34 |
-
in_channels=256,
|
35 |
-
feat_channels=256,
|
36 |
-
anchor_generator=dict(
|
37 |
-
type='AnchorGenerator',
|
38 |
-
scales=[8],
|
39 |
-
ratios=[0.5, 1.0, 2.0],
|
40 |
-
strides=[4, 8, 16, 32, 64]),
|
41 |
-
bbox_coder=dict(
|
42 |
-
type='DeltaXYWHBBoxCoder',
|
43 |
-
target_means=[0.0, 0.0, 0.0, 0.0],
|
44 |
-
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
45 |
-
loss_cls=dict(
|
46 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
47 |
-
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
48 |
-
roi_head=dict(
|
49 |
-
type='SelfSupStandardRoIHead',
|
50 |
-
bbox_roi_extractor=dict(
|
51 |
-
type='SingleRoIExtractor',
|
52 |
-
roi_layer=dict(
|
53 |
-
type='RoIAlign', output_size=7, sampling_ratio=0),
|
54 |
-
out_channels=256,
|
55 |
-
featmap_strides=[4, 8, 16, 32]),
|
56 |
-
bbox_head=dict(
|
57 |
-
type='SelfSupShared4Conv1FCBBoxHead',
|
58 |
-
in_channels=256,
|
59 |
-
num_classes=256,
|
60 |
-
roi_feat_size=7,
|
61 |
-
reg_class_agnostic=False,
|
62 |
-
loss_bbox=dict(type='L1Loss', loss_weight=1.0),
|
63 |
-
loss_cls=dict(
|
64 |
-
type='ContrastiveLoss', loss_weight=1.0, temperature=0.5)),
|
65 |
-
mask_roi_extractor=None,
|
66 |
-
mask_head=None),
|
67 |
-
train_cfg=dict(
|
68 |
-
rpn=dict(
|
69 |
-
assigner=dict(
|
70 |
-
type='MaxIoUAssigner',
|
71 |
-
pos_iou_thr=0.7,
|
72 |
-
neg_iou_thr=0.3,
|
73 |
-
min_pos_iou=0.3,
|
74 |
-
match_low_quality=True,
|
75 |
-
ignore_iof_thr=-1),
|
76 |
-
sampler=dict(
|
77 |
-
type='RandomSampler',
|
78 |
-
num=4096,
|
79 |
-
pos_fraction=1.0,
|
80 |
-
neg_pos_ub=-1,
|
81 |
-
add_gt_as_proposals=False),
|
82 |
-
allowed_border=-1,
|
83 |
-
pos_weight=-1,
|
84 |
-
debug=False),
|
85 |
-
rpn_proposal=dict(
|
86 |
-
nms_pre=2000,
|
87 |
-
max_per_img=1000,
|
88 |
-
nms=dict(type='nms', iou_threshold=0.7),
|
89 |
-
min_bbox_size=0),
|
90 |
-
rcnn=dict(
|
91 |
-
assigner=dict(
|
92 |
-
type='MaxIoUAssigner',
|
93 |
-
pos_iou_thr=0.5,
|
94 |
-
neg_iou_thr=0.5,
|
95 |
-
min_pos_iou=0.5,
|
96 |
-
match_low_quality=True,
|
97 |
-
ignore_iof_thr=-1,
|
98 |
-
gt_max_assign_all=False),
|
99 |
-
sampler=dict(
|
100 |
-
type='RandomSampler',
|
101 |
-
num=4096,
|
102 |
-
pos_fraction=1,
|
103 |
-
neg_pos_ub=0,
|
104 |
-
add_gt_as_proposals=True),
|
105 |
-
mask_size=28,
|
106 |
-
pos_weight=-1,
|
107 |
-
debug=False)),
|
108 |
-
test_cfg=dict(
|
109 |
-
rpn=dict(
|
110 |
-
nms_pre=1000,
|
111 |
-
max_per_img=1000,
|
112 |
-
nms=dict(type='nms', iou_threshold=0.7),
|
113 |
-
min_bbox_size=0),
|
114 |
-
rcnn=dict(
|
115 |
-
score_thr=0.05,
|
116 |
-
nms=dict(type='nms', iou_threshold=0.5),
|
117 |
-
max_per_img=100,
|
118 |
-
mask_thr_binary=0.5)),
|
119 |
-
init_cfg=dict(
|
120 |
-
type='Pretrained',
|
121 |
-
checkpoint='pretrain/simmim_swin-b_mmselfsup-pretrain.pth')))
|
122 |
-
train_dataset_type = 'MultiViewCocoDataset'
|
123 |
-
test_dataset_type = 'CocoDataset'
|
124 |
-
data_root = 'data/coco/'
|
125 |
-
classes = ['selective_search']
|
126 |
-
img_norm_cfg = dict(
|
127 |
-
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
128 |
-
load_pipeline = [
|
129 |
-
dict(type='LoadImageFromFile'),
|
130 |
-
dict(type='LoadAnnotations', with_bbox=True, with_mask=False)
|
131 |
-
]
|
132 |
-
train_pipeline1 = [
|
133 |
-
dict(
|
134 |
-
type='Resize',
|
135 |
-
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
136 |
-
(1333, 768), (1333, 800)],
|
137 |
-
multiscale_mode='value',
|
138 |
-
keep_ratio=True),
|
139 |
-
dict(type='FilterAnnotations', min_gt_bbox_wh=(0.01, 0.01)),
|
140 |
-
dict(type='Pad', size_divisor=32),
|
141 |
-
dict(type='RandFlip', flip_ratio=0.5),
|
142 |
-
dict(
|
143 |
-
type='OneOf',
|
144 |
-
transforms=[
|
145 |
-
dict(type='Identity'),
|
146 |
-
dict(type='AutoContrast'),
|
147 |
-
dict(type='RandEqualize'),
|
148 |
-
dict(type='RandSolarize'),
|
149 |
-
dict(type='RandColor'),
|
150 |
-
dict(type='RandContrast'),
|
151 |
-
dict(type='RandBrightness'),
|
152 |
-
dict(type='RandSharpness'),
|
153 |
-
dict(type='RandPosterize')
|
154 |
-
]),
|
155 |
-
dict(
|
156 |
-
type='Normalize',
|
157 |
-
mean=[123.675, 116.28, 103.53],
|
158 |
-
std=[58.395, 57.12, 57.375],
|
159 |
-
to_rgb=True),
|
160 |
-
dict(type='DefaultFormatBundle'),
|
161 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
162 |
-
]
|
163 |
-
train_pipeline2 = [
|
164 |
-
dict(
|
165 |
-
type='Resize',
|
166 |
-
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
167 |
-
(1333, 768), (1333, 800)],
|
168 |
-
multiscale_mode='value',
|
169 |
-
keep_ratio=True),
|
170 |
-
dict(type='FilterAnnotations', min_gt_bbox_wh=(0.01, 0.01)),
|
171 |
-
dict(type='Pad', size_divisor=32),
|
172 |
-
dict(type='RandFlip', flip_ratio=0.5),
|
173 |
-
dict(
|
174 |
-
type='OneOf',
|
175 |
-
transforms=[
|
176 |
-
dict(type='Identity'),
|
177 |
-
dict(type='AutoContrast'),
|
178 |
-
dict(type='RandEqualize'),
|
179 |
-
dict(type='RandSolarize'),
|
180 |
-
dict(type='RandColor'),
|
181 |
-
dict(type='RandContrast'),
|
182 |
-
dict(type='RandBrightness'),
|
183 |
-
dict(type='RandSharpness'),
|
184 |
-
dict(type='RandPosterize')
|
185 |
-
]),
|
186 |
-
dict(
|
187 |
-
type='Normalize',
|
188 |
-
mean=[123.675, 116.28, 103.53],
|
189 |
-
std=[58.395, 57.12, 57.375],
|
190 |
-
to_rgb=True),
|
191 |
-
dict(type='DefaultFormatBundle'),
|
192 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
193 |
-
]
|
194 |
-
test_pipeline = [
|
195 |
-
dict(type='LoadImageFromFile'),
|
196 |
-
dict(
|
197 |
-
type='MultiScaleFlipAug',
|
198 |
-
img_scale=(1333, 800),
|
199 |
-
flip=False,
|
200 |
-
transforms=[
|
201 |
-
dict(type='Resize', keep_ratio=True),
|
202 |
-
dict(type='RandomFlip'),
|
203 |
-
dict(
|
204 |
-
type='Normalize',
|
205 |
-
mean=[123.675, 116.28, 103.53],
|
206 |
-
std=[58.395, 57.12, 57.375],
|
207 |
-
to_rgb=True),
|
208 |
-
dict(type='Pad', size_divisor=32),
|
209 |
-
dict(type='ImageToTensor', keys=['img']),
|
210 |
-
dict(type='Collect', keys=['img'])
|
211 |
-
])
|
212 |
-
]
|
213 |
-
data = dict(
|
214 |
-
samples_per_gpu=4,
|
215 |
-
workers_per_gpu=2,
|
216 |
-
train=dict(
|
217 |
-
type='MultiViewCocoDataset',
|
218 |
-
dataset=dict(
|
219 |
-
type='CocoDataset',
|
220 |
-
classes=['selective_search'],
|
221 |
-
ann_file=
|
222 |
-
'data/coco/filtered_proposals/train2017_ratio3size0008@0.5.json',
|
223 |
-
img_prefix='data/coco/train2017/',
|
224 |
-
pipeline=[
|
225 |
-
dict(type='LoadImageFromFile'),
|
226 |
-
dict(type='LoadAnnotations', with_bbox=True, with_mask=False)
|
227 |
-
]),
|
228 |
-
num_views=2,
|
229 |
-
pipelines=[[{
|
230 |
-
'type':
|
231 |
-
'Resize',
|
232 |
-
'img_scale': [(1333, 640), (1333, 672), (1333, 704), (1333, 736),
|
233 |
-
(1333, 768), (1333, 800)],
|
234 |
-
'multiscale_mode':
|
235 |
-
'value',
|
236 |
-
'keep_ratio':
|
237 |
-
True
|
238 |
-
}, {
|
239 |
-
'type': 'FilterAnnotations',
|
240 |
-
'min_gt_bbox_wh': (0.01, 0.01)
|
241 |
-
}, {
|
242 |
-
'type': 'Pad',
|
243 |
-
'size_divisor': 32
|
244 |
-
}, {
|
245 |
-
'type': 'RandFlip',
|
246 |
-
'flip_ratio': 0.5
|
247 |
-
}, {
|
248 |
-
'type':
|
249 |
-
'OneOf',
|
250 |
-
'transforms': [{
|
251 |
-
'type': 'Identity'
|
252 |
-
}, {
|
253 |
-
'type': 'AutoContrast'
|
254 |
-
}, {
|
255 |
-
'type': 'RandEqualize'
|
256 |
-
}, {
|
257 |
-
'type': 'RandSolarize'
|
258 |
-
}, {
|
259 |
-
'type': 'RandColor'
|
260 |
-
}, {
|
261 |
-
'type': 'RandContrast'
|
262 |
-
}, {
|
263 |
-
'type': 'RandBrightness'
|
264 |
-
}, {
|
265 |
-
'type': 'RandSharpness'
|
266 |
-
}, {
|
267 |
-
'type': 'RandPosterize'
|
268 |
-
}]
|
269 |
-
}, {
|
270 |
-
'type': 'Normalize',
|
271 |
-
'mean': [123.675, 116.28, 103.53],
|
272 |
-
'std': [58.395, 57.12, 57.375],
|
273 |
-
'to_rgb': True
|
274 |
-
}, {
|
275 |
-
'type': 'DefaultFormatBundle'
|
276 |
-
}, {
|
277 |
-
'type': 'Collect',
|
278 |
-
'keys': ['img', 'gt_bboxes', 'gt_labels']
|
279 |
-
}],
|
280 |
-
[{
|
281 |
-
'type':
|
282 |
-
'Resize',
|
283 |
-
'img_scale': [(1333, 640), (1333, 672), (1333, 704),
|
284 |
-
(1333, 736), (1333, 768), (1333, 800)],
|
285 |
-
'multiscale_mode':
|
286 |
-
'value',
|
287 |
-
'keep_ratio':
|
288 |
-
True
|
289 |
-
}, {
|
290 |
-
'type': 'FilterAnnotations',
|
291 |
-
'min_gt_bbox_wh': (0.01, 0.01)
|
292 |
-
}, {
|
293 |
-
'type': 'Pad',
|
294 |
-
'size_divisor': 32
|
295 |
-
}, {
|
296 |
-
'type': 'RandFlip',
|
297 |
-
'flip_ratio': 0.5
|
298 |
-
}, {
|
299 |
-
'type':
|
300 |
-
'OneOf',
|
301 |
-
'transforms': [{
|
302 |
-
'type': 'Identity'
|
303 |
-
}, {
|
304 |
-
'type': 'AutoContrast'
|
305 |
-
}, {
|
306 |
-
'type': 'RandEqualize'
|
307 |
-
}, {
|
308 |
-
'type': 'RandSolarize'
|
309 |
-
}, {
|
310 |
-
'type': 'RandColor'
|
311 |
-
}, {
|
312 |
-
'type': 'RandContrast'
|
313 |
-
}, {
|
314 |
-
'type': 'RandBrightness'
|
315 |
-
}, {
|
316 |
-
'type': 'RandSharpness'
|
317 |
-
}, {
|
318 |
-
'type': 'RandPosterize'
|
319 |
-
}]
|
320 |
-
}, {
|
321 |
-
'type': 'Normalize',
|
322 |
-
'mean': [123.675, 116.28, 103.53],
|
323 |
-
'std': [58.395, 57.12, 57.375],
|
324 |
-
'to_rgb': True
|
325 |
-
}, {
|
326 |
-
'type': 'DefaultFormatBundle'
|
327 |
-
}, {
|
328 |
-
'type': 'Collect',
|
329 |
-
'keys': ['img', 'gt_bboxes', 'gt_labels']
|
330 |
-
}]]),
|
331 |
-
val=dict(
|
332 |
-
type='CocoDataset',
|
333 |
-
classes=['selective_search'],
|
334 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
335 |
-
img_prefix='data/coco/val2017/',
|
336 |
-
pipeline=[
|
337 |
-
dict(type='LoadImageFromFile'),
|
338 |
-
dict(
|
339 |
-
type='MultiScaleFlipAug',
|
340 |
-
img_scale=(1333, 800),
|
341 |
-
flip=False,
|
342 |
-
transforms=[
|
343 |
-
dict(type='Resize', keep_ratio=True),
|
344 |
-
dict(type='RandomFlip'),
|
345 |
-
dict(
|
346 |
-
type='Normalize',
|
347 |
-
mean=[123.675, 116.28, 103.53],
|
348 |
-
std=[58.395, 57.12, 57.375],
|
349 |
-
to_rgb=True),
|
350 |
-
dict(type='Pad', size_divisor=32),
|
351 |
-
dict(type='ImageToTensor', keys=['img']),
|
352 |
-
dict(type='Collect', keys=['img'])
|
353 |
-
])
|
354 |
-
]),
|
355 |
-
test=dict(
|
356 |
-
type='CocoDataset',
|
357 |
-
classes=['selective_search'],
|
358 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
359 |
-
img_prefix='data/coco/val2017/',
|
360 |
-
pipeline=[
|
361 |
-
dict(type='LoadImageFromFile'),
|
362 |
-
dict(
|
363 |
-
type='MultiScaleFlipAug',
|
364 |
-
img_scale=(1333, 800),
|
365 |
-
flip=False,
|
366 |
-
transforms=[
|
367 |
-
dict(type='Resize', keep_ratio=True),
|
368 |
-
dict(type='RandomFlip'),
|
369 |
-
dict(
|
370 |
-
type='Normalize',
|
371 |
-
mean=[123.675, 116.28, 103.53],
|
372 |
-
std=[58.395, 57.12, 57.375],
|
373 |
-
to_rgb=True),
|
374 |
-
dict(type='Pad', size_divisor=32),
|
375 |
-
dict(type='ImageToTensor', keys=['img']),
|
376 |
-
dict(type='Collect', keys=['img'])
|
377 |
-
])
|
378 |
-
]))
|
379 |
-
evaluation = dict(interval=65535, gpu_collect=True, metric='bbox')
|
380 |
-
optimizer = dict(
|
381 |
-
type='AdamW',
|
382 |
-
lr=6e-05,
|
383 |
-
betas=(0.9, 0.999),
|
384 |
-
weight_decay=0.05,
|
385 |
-
paramwise_cfg=dict(
|
386 |
-
custom_keys=dict(
|
387 |
-
absolute_pos_embed=dict(decay_mult=0.0),
|
388 |
-
relative_position_bias_table=dict(decay_mult=0.0),
|
389 |
-
norm=dict(decay_mult=0.0))))
|
390 |
-
optimizer_config = dict(grad_clip=None)
|
391 |
-
lr_config = dict(
|
392 |
-
policy='step',
|
393 |
-
warmup='linear',
|
394 |
-
warmup_iters=1000,
|
395 |
-
warmup_ratio=0.001,
|
396 |
-
step=[8, 11])
|
397 |
-
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
398 |
-
checkpoint_config = dict(interval=1)
|
399 |
-
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
400 |
-
custom_hooks = [
|
401 |
-
dict(type='MomentumUpdateHook'),
|
402 |
-
dict(
|
403 |
-
type='MMDetWandbHook',
|
404 |
-
init_kwargs=dict(project='I2B', group='pretrain'),
|
405 |
-
interval=50,
|
406 |
-
num_eval_images=0,
|
407 |
-
log_checkpoint=False)
|
408 |
-
]
|
409 |
-
dist_params = dict(backend='nccl')
|
410 |
-
log_level = 'INFO'
|
411 |
-
load_from = None
|
412 |
-
resume_from = None
|
413 |
-
workflow = [('train', 1)]
|
414 |
-
opencv_num_threads = 0
|
415 |
-
mp_start_method = 'fork'
|
416 |
-
auto_scale_lr = dict(enable=True, base_batch_size=32)
|
417 |
-
custom_imports = dict(
|
418 |
-
imports=[
|
419 |
-
'mmselfsup.datasets.pipelines',
|
420 |
-
'selfsup.core.hook.momentum_update_hook',
|
421 |
-
'selfsup.datasets.pipelines.selfsup_pipelines',
|
422 |
-
'selfsup.datasets.pipelines.rand_aug',
|
423 |
-
'selfsup.datasets.single_view_coco',
|
424 |
-
'selfsup.datasets.multi_view_coco',
|
425 |
-
'selfsup.models.losses.contrastive_loss',
|
426 |
-
'selfsup.models.dense_heads.fcos_head',
|
427 |
-
'selfsup.models.dense_heads.retina_head',
|
428 |
-
'selfsup.models.dense_heads.detr_head',
|
429 |
-
'selfsup.models.dense_heads.deformable_detr_head',
|
430 |
-
'selfsup.models.roi_heads.bbox_heads.convfc_bbox_head',
|
431 |
-
'selfsup.models.roi_heads.standard_roi_head',
|
432 |
-
'selfsup.models.detectors.selfsup_detector',
|
433 |
-
'selfsup.models.detectors.selfsup_fcos',
|
434 |
-
'selfsup.models.detectors.selfsup_detr',
|
435 |
-
'selfsup.models.detectors.selfsup_deformable_detr',
|
436 |
-
'selfsup.models.detectors.selfsup_retinanet',
|
437 |
-
'selfsup.models.detectors.selfsup_mask_rcnn',
|
438 |
-
'selfsup.core.bbox.assigners.hungarian_assigner',
|
439 |
-
'selfsup.core.bbox.assigners.pseudo_hungarian_assigner',
|
440 |
-
'selfsup.core.bbox.match_costs.match_cost'
|
441 |
-
],
|
442 |
-
allow_failed_imports=False)
|
443 |
-
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth'
|
444 |
-
find_unused_parameters = True
|
445 |
-
work_dir = 'work_dirs/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain'
|
446 |
-
auto_resume = False
|
447 |
-
gpu_ids = range(0, 8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|