limingcv commited on
Commit
be33604
1 Parent(s): 3a82e05

remove wrong files

Browse files
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log DELETED
The diff for this file is too large to render. See raw diff
 
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/20230120_091015.log.json DELETED
The diff for this file is too large to render. See raw diff
 
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/final_model.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7aca88dfee95a9cb04041b5b93a19169aaa3bb14ff12c237042bc981205d85ab
3
- size 422177783
 
 
 
 
pretrain/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain/selfsup_mask-rcnn_swin-b_simmim.py DELETED
@@ -1,447 +0,0 @@
1
- model = dict(
2
- type='SelfSupDetector',
3
- backbone=dict(
4
- type='SelfSupMaskRCNN',
5
- backbone=dict(
6
- type='SwinTransformer',
7
- embed_dims=128,
8
- depths=[2, 2, 18, 2],
9
- num_heads=[4, 8, 16, 32],
10
- window_size=7,
11
- mlp_ratio=4,
12
- qkv_bias=True,
13
- qk_scale=None,
14
- drop_rate=0.0,
15
- attn_drop_rate=0.0,
16
- drop_path_rate=0.2,
17
- patch_norm=True,
18
- out_indices=(0, 1, 2, 3),
19
- with_cp=False,
20
- frozen_stages=4,
21
- convert_weights=True,
22
- init_cfg=dict(
23
- type='Pretrained',
24
- checkpoint=
25
- 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth'
26
- )),
27
- neck=dict(
28
- type='FPN',
29
- in_channels=[128, 256, 512, 1024],
30
- out_channels=256,
31
- num_outs=5),
32
- rpn_head=dict(
33
- type='RPNHead',
34
- in_channels=256,
35
- feat_channels=256,
36
- anchor_generator=dict(
37
- type='AnchorGenerator',
38
- scales=[8],
39
- ratios=[0.5, 1.0, 2.0],
40
- strides=[4, 8, 16, 32, 64]),
41
- bbox_coder=dict(
42
- type='DeltaXYWHBBoxCoder',
43
- target_means=[0.0, 0.0, 0.0, 0.0],
44
- target_stds=[1.0, 1.0, 1.0, 1.0]),
45
- loss_cls=dict(
46
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
47
- loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
48
- roi_head=dict(
49
- type='SelfSupStandardRoIHead',
50
- bbox_roi_extractor=dict(
51
- type='SingleRoIExtractor',
52
- roi_layer=dict(
53
- type='RoIAlign', output_size=7, sampling_ratio=0),
54
- out_channels=256,
55
- featmap_strides=[4, 8, 16, 32]),
56
- bbox_head=dict(
57
- type='SelfSupShared4Conv1FCBBoxHead',
58
- in_channels=256,
59
- num_classes=256,
60
- roi_feat_size=7,
61
- reg_class_agnostic=False,
62
- loss_bbox=dict(type='L1Loss', loss_weight=1.0),
63
- loss_cls=dict(
64
- type='ContrastiveLoss', loss_weight=1.0, temperature=0.5)),
65
- mask_roi_extractor=None,
66
- mask_head=None),
67
- train_cfg=dict(
68
- rpn=dict(
69
- assigner=dict(
70
- type='MaxIoUAssigner',
71
- pos_iou_thr=0.7,
72
- neg_iou_thr=0.3,
73
- min_pos_iou=0.3,
74
- match_low_quality=True,
75
- ignore_iof_thr=-1),
76
- sampler=dict(
77
- type='RandomSampler',
78
- num=4096,
79
- pos_fraction=1.0,
80
- neg_pos_ub=-1,
81
- add_gt_as_proposals=False),
82
- allowed_border=-1,
83
- pos_weight=-1,
84
- debug=False),
85
- rpn_proposal=dict(
86
- nms_pre=2000,
87
- max_per_img=1000,
88
- nms=dict(type='nms', iou_threshold=0.7),
89
- min_bbox_size=0),
90
- rcnn=dict(
91
- assigner=dict(
92
- type='MaxIoUAssigner',
93
- pos_iou_thr=0.5,
94
- neg_iou_thr=0.5,
95
- min_pos_iou=0.5,
96
- match_low_quality=True,
97
- ignore_iof_thr=-1,
98
- gt_max_assign_all=False),
99
- sampler=dict(
100
- type='RandomSampler',
101
- num=4096,
102
- pos_fraction=1,
103
- neg_pos_ub=0,
104
- add_gt_as_proposals=True),
105
- mask_size=28,
106
- pos_weight=-1,
107
- debug=False)),
108
- test_cfg=dict(
109
- rpn=dict(
110
- nms_pre=1000,
111
- max_per_img=1000,
112
- nms=dict(type='nms', iou_threshold=0.7),
113
- min_bbox_size=0),
114
- rcnn=dict(
115
- score_thr=0.05,
116
- nms=dict(type='nms', iou_threshold=0.5),
117
- max_per_img=100,
118
- mask_thr_binary=0.5)),
119
- init_cfg=dict(
120
- type='Pretrained',
121
- checkpoint='pretrain/simmim_swin-b_mmselfsup-pretrain.pth')))
122
- train_dataset_type = 'MultiViewCocoDataset'
123
- test_dataset_type = 'CocoDataset'
124
- data_root = 'data/coco/'
125
- classes = ['selective_search']
126
- img_norm_cfg = dict(
127
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
128
- load_pipeline = [
129
- dict(type='LoadImageFromFile'),
130
- dict(type='LoadAnnotations', with_bbox=True, with_mask=False)
131
- ]
132
- train_pipeline1 = [
133
- dict(
134
- type='Resize',
135
- img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
136
- (1333, 768), (1333, 800)],
137
- multiscale_mode='value',
138
- keep_ratio=True),
139
- dict(type='FilterAnnotations', min_gt_bbox_wh=(0.01, 0.01)),
140
- dict(type='Pad', size_divisor=32),
141
- dict(type='RandFlip', flip_ratio=0.5),
142
- dict(
143
- type='OneOf',
144
- transforms=[
145
- dict(type='Identity'),
146
- dict(type='AutoContrast'),
147
- dict(type='RandEqualize'),
148
- dict(type='RandSolarize'),
149
- dict(type='RandColor'),
150
- dict(type='RandContrast'),
151
- dict(type='RandBrightness'),
152
- dict(type='RandSharpness'),
153
- dict(type='RandPosterize')
154
- ]),
155
- dict(
156
- type='Normalize',
157
- mean=[123.675, 116.28, 103.53],
158
- std=[58.395, 57.12, 57.375],
159
- to_rgb=True),
160
- dict(type='DefaultFormatBundle'),
161
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
162
- ]
163
- train_pipeline2 = [
164
- dict(
165
- type='Resize',
166
- img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
167
- (1333, 768), (1333, 800)],
168
- multiscale_mode='value',
169
- keep_ratio=True),
170
- dict(type='FilterAnnotations', min_gt_bbox_wh=(0.01, 0.01)),
171
- dict(type='Pad', size_divisor=32),
172
- dict(type='RandFlip', flip_ratio=0.5),
173
- dict(
174
- type='OneOf',
175
- transforms=[
176
- dict(type='Identity'),
177
- dict(type='AutoContrast'),
178
- dict(type='RandEqualize'),
179
- dict(type='RandSolarize'),
180
- dict(type='RandColor'),
181
- dict(type='RandContrast'),
182
- dict(type='RandBrightness'),
183
- dict(type='RandSharpness'),
184
- dict(type='RandPosterize')
185
- ]),
186
- dict(
187
- type='Normalize',
188
- mean=[123.675, 116.28, 103.53],
189
- std=[58.395, 57.12, 57.375],
190
- to_rgb=True),
191
- dict(type='DefaultFormatBundle'),
192
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
193
- ]
194
- test_pipeline = [
195
- dict(type='LoadImageFromFile'),
196
- dict(
197
- type='MultiScaleFlipAug',
198
- img_scale=(1333, 800),
199
- flip=False,
200
- transforms=[
201
- dict(type='Resize', keep_ratio=True),
202
- dict(type='RandomFlip'),
203
- dict(
204
- type='Normalize',
205
- mean=[123.675, 116.28, 103.53],
206
- std=[58.395, 57.12, 57.375],
207
- to_rgb=True),
208
- dict(type='Pad', size_divisor=32),
209
- dict(type='ImageToTensor', keys=['img']),
210
- dict(type='Collect', keys=['img'])
211
- ])
212
- ]
213
- data = dict(
214
- samples_per_gpu=4,
215
- workers_per_gpu=2,
216
- train=dict(
217
- type='MultiViewCocoDataset',
218
- dataset=dict(
219
- type='CocoDataset',
220
- classes=['selective_search'],
221
- ann_file=
222
- 'data/coco/filtered_proposals/train2017_ratio3size0008@0.5.json',
223
- img_prefix='data/coco/train2017/',
224
- pipeline=[
225
- dict(type='LoadImageFromFile'),
226
- dict(type='LoadAnnotations', with_bbox=True, with_mask=False)
227
- ]),
228
- num_views=2,
229
- pipelines=[[{
230
- 'type':
231
- 'Resize',
232
- 'img_scale': [(1333, 640), (1333, 672), (1333, 704), (1333, 736),
233
- (1333, 768), (1333, 800)],
234
- 'multiscale_mode':
235
- 'value',
236
- 'keep_ratio':
237
- True
238
- }, {
239
- 'type': 'FilterAnnotations',
240
- 'min_gt_bbox_wh': (0.01, 0.01)
241
- }, {
242
- 'type': 'Pad',
243
- 'size_divisor': 32
244
- }, {
245
- 'type': 'RandFlip',
246
- 'flip_ratio': 0.5
247
- }, {
248
- 'type':
249
- 'OneOf',
250
- 'transforms': [{
251
- 'type': 'Identity'
252
- }, {
253
- 'type': 'AutoContrast'
254
- }, {
255
- 'type': 'RandEqualize'
256
- }, {
257
- 'type': 'RandSolarize'
258
- }, {
259
- 'type': 'RandColor'
260
- }, {
261
- 'type': 'RandContrast'
262
- }, {
263
- 'type': 'RandBrightness'
264
- }, {
265
- 'type': 'RandSharpness'
266
- }, {
267
- 'type': 'RandPosterize'
268
- }]
269
- }, {
270
- 'type': 'Normalize',
271
- 'mean': [123.675, 116.28, 103.53],
272
- 'std': [58.395, 57.12, 57.375],
273
- 'to_rgb': True
274
- }, {
275
- 'type': 'DefaultFormatBundle'
276
- }, {
277
- 'type': 'Collect',
278
- 'keys': ['img', 'gt_bboxes', 'gt_labels']
279
- }],
280
- [{
281
- 'type':
282
- 'Resize',
283
- 'img_scale': [(1333, 640), (1333, 672), (1333, 704),
284
- (1333, 736), (1333, 768), (1333, 800)],
285
- 'multiscale_mode':
286
- 'value',
287
- 'keep_ratio':
288
- True
289
- }, {
290
- 'type': 'FilterAnnotations',
291
- 'min_gt_bbox_wh': (0.01, 0.01)
292
- }, {
293
- 'type': 'Pad',
294
- 'size_divisor': 32
295
- }, {
296
- 'type': 'RandFlip',
297
- 'flip_ratio': 0.5
298
- }, {
299
- 'type':
300
- 'OneOf',
301
- 'transforms': [{
302
- 'type': 'Identity'
303
- }, {
304
- 'type': 'AutoContrast'
305
- }, {
306
- 'type': 'RandEqualize'
307
- }, {
308
- 'type': 'RandSolarize'
309
- }, {
310
- 'type': 'RandColor'
311
- }, {
312
- 'type': 'RandContrast'
313
- }, {
314
- 'type': 'RandBrightness'
315
- }, {
316
- 'type': 'RandSharpness'
317
- }, {
318
- 'type': 'RandPosterize'
319
- }]
320
- }, {
321
- 'type': 'Normalize',
322
- 'mean': [123.675, 116.28, 103.53],
323
- 'std': [58.395, 57.12, 57.375],
324
- 'to_rgb': True
325
- }, {
326
- 'type': 'DefaultFormatBundle'
327
- }, {
328
- 'type': 'Collect',
329
- 'keys': ['img', 'gt_bboxes', 'gt_labels']
330
- }]]),
331
- val=dict(
332
- type='CocoDataset',
333
- classes=['selective_search'],
334
- ann_file='data/coco/annotations/instances_val2017.json',
335
- img_prefix='data/coco/val2017/',
336
- pipeline=[
337
- dict(type='LoadImageFromFile'),
338
- dict(
339
- type='MultiScaleFlipAug',
340
- img_scale=(1333, 800),
341
- flip=False,
342
- transforms=[
343
- dict(type='Resize', keep_ratio=True),
344
- dict(type='RandomFlip'),
345
- dict(
346
- type='Normalize',
347
- mean=[123.675, 116.28, 103.53],
348
- std=[58.395, 57.12, 57.375],
349
- to_rgb=True),
350
- dict(type='Pad', size_divisor=32),
351
- dict(type='ImageToTensor', keys=['img']),
352
- dict(type='Collect', keys=['img'])
353
- ])
354
- ]),
355
- test=dict(
356
- type='CocoDataset',
357
- classes=['selective_search'],
358
- ann_file='data/coco/annotations/instances_val2017.json',
359
- img_prefix='data/coco/val2017/',
360
- pipeline=[
361
- dict(type='LoadImageFromFile'),
362
- dict(
363
- type='MultiScaleFlipAug',
364
- img_scale=(1333, 800),
365
- flip=False,
366
- transforms=[
367
- dict(type='Resize', keep_ratio=True),
368
- dict(type='RandomFlip'),
369
- dict(
370
- type='Normalize',
371
- mean=[123.675, 116.28, 103.53],
372
- std=[58.395, 57.12, 57.375],
373
- to_rgb=True),
374
- dict(type='Pad', size_divisor=32),
375
- dict(type='ImageToTensor', keys=['img']),
376
- dict(type='Collect', keys=['img'])
377
- ])
378
- ]))
379
- evaluation = dict(interval=65535, gpu_collect=True, metric='bbox')
380
- optimizer = dict(
381
- type='AdamW',
382
- lr=6e-05,
383
- betas=(0.9, 0.999),
384
- weight_decay=0.05,
385
- paramwise_cfg=dict(
386
- custom_keys=dict(
387
- absolute_pos_embed=dict(decay_mult=0.0),
388
- relative_position_bias_table=dict(decay_mult=0.0),
389
- norm=dict(decay_mult=0.0))))
390
- optimizer_config = dict(grad_clip=None)
391
- lr_config = dict(
392
- policy='step',
393
- warmup='linear',
394
- warmup_iters=1000,
395
- warmup_ratio=0.001,
396
- step=[8, 11])
397
- runner = dict(type='EpochBasedRunner', max_epochs=12)
398
- checkpoint_config = dict(interval=1)
399
- log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
400
- custom_hooks = [
401
- dict(type='MomentumUpdateHook'),
402
- dict(
403
- type='MMDetWandbHook',
404
- init_kwargs=dict(project='I2B', group='pretrain'),
405
- interval=50,
406
- num_eval_images=0,
407
- log_checkpoint=False)
408
- ]
409
- dist_params = dict(backend='nccl')
410
- log_level = 'INFO'
411
- load_from = None
412
- resume_from = None
413
- workflow = [('train', 1)]
414
- opencv_num_threads = 0
415
- mp_start_method = 'fork'
416
- auto_scale_lr = dict(enable=True, base_batch_size=32)
417
- custom_imports = dict(
418
- imports=[
419
- 'mmselfsup.datasets.pipelines',
420
- 'selfsup.core.hook.momentum_update_hook',
421
- 'selfsup.datasets.pipelines.selfsup_pipelines',
422
- 'selfsup.datasets.pipelines.rand_aug',
423
- 'selfsup.datasets.single_view_coco',
424
- 'selfsup.datasets.multi_view_coco',
425
- 'selfsup.models.losses.contrastive_loss',
426
- 'selfsup.models.dense_heads.fcos_head',
427
- 'selfsup.models.dense_heads.retina_head',
428
- 'selfsup.models.dense_heads.detr_head',
429
- 'selfsup.models.dense_heads.deformable_detr_head',
430
- 'selfsup.models.roi_heads.bbox_heads.convfc_bbox_head',
431
- 'selfsup.models.roi_heads.standard_roi_head',
432
- 'selfsup.models.detectors.selfsup_detector',
433
- 'selfsup.models.detectors.selfsup_fcos',
434
- 'selfsup.models.detectors.selfsup_detr',
435
- 'selfsup.models.detectors.selfsup_deformable_detr',
436
- 'selfsup.models.detectors.selfsup_retinanet',
437
- 'selfsup.models.detectors.selfsup_mask_rcnn',
438
- 'selfsup.core.bbox.assigners.hungarian_assigner',
439
- 'selfsup.core.bbox.assigners.pseudo_hungarian_assigner',
440
- 'selfsup.core.bbox.match_costs.match_cost'
441
- ],
442
- allow_failed_imports=False)
443
- pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth'
444
- find_unused_parameters = True
445
- work_dir = 'work_dirs/selfsup_mask-rcnn_swin-b_lsj-3x-coco_simmim-pretrain'
446
- auto_resume = False
447
- gpu_ids = range(0, 8)