Delete pretrain/selfsup_detr_cluster-ids-as-pseudo-labels
Browse files
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/detr_pseudo_label.py
DELETED
@@ -1,424 +0,0 @@
|
|
1 |
-
model = dict(
|
2 |
-
type='DETR',
|
3 |
-
backbone=dict(
|
4 |
-
type='ResNet',
|
5 |
-
depth=50,
|
6 |
-
num_stages=4,
|
7 |
-
out_indices=(3, ),
|
8 |
-
frozen_stages=4,
|
9 |
-
norm_cfg=dict(type='BN', requires_grad=False),
|
10 |
-
norm_eval=True,
|
11 |
-
style='pytorch',
|
12 |
-
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
13 |
-
bbox_head=dict(
|
14 |
-
type='DETRHead',
|
15 |
-
num_classes=256,
|
16 |
-
in_channels=2048,
|
17 |
-
transformer=dict(
|
18 |
-
type='Transformer',
|
19 |
-
encoder=dict(
|
20 |
-
type='DetrTransformerEncoder',
|
21 |
-
num_layers=6,
|
22 |
-
transformerlayers=dict(
|
23 |
-
type='BaseTransformerLayer',
|
24 |
-
attn_cfgs=[
|
25 |
-
dict(
|
26 |
-
type='MultiheadAttention',
|
27 |
-
embed_dims=256,
|
28 |
-
num_heads=8,
|
29 |
-
dropout=0.1)
|
30 |
-
],
|
31 |
-
feedforward_channels=2048,
|
32 |
-
ffn_dropout=0.1,
|
33 |
-
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
34 |
-
decoder=dict(
|
35 |
-
type='DetrTransformerDecoder',
|
36 |
-
return_intermediate=True,
|
37 |
-
num_layers=6,
|
38 |
-
transformerlayers=dict(
|
39 |
-
type='DetrTransformerDecoderLayer',
|
40 |
-
attn_cfgs=dict(
|
41 |
-
type='MultiheadAttention',
|
42 |
-
embed_dims=256,
|
43 |
-
num_heads=8,
|
44 |
-
dropout=0.1),
|
45 |
-
feedforward_channels=2048,
|
46 |
-
ffn_dropout=0.1,
|
47 |
-
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
48 |
-
'ffn', 'norm')))),
|
49 |
-
positional_encoding=dict(
|
50 |
-
type='SinePositionalEncoding', num_feats=128, normalize=True),
|
51 |
-
loss_cls=dict(
|
52 |
-
type='CrossEntropyLoss',
|
53 |
-
bg_cls_weight=0.1,
|
54 |
-
use_sigmoid=False,
|
55 |
-
loss_weight=1.0,
|
56 |
-
class_weight=1.0),
|
57 |
-
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
58 |
-
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
59 |
-
train_cfg=dict(
|
60 |
-
assigner=dict(
|
61 |
-
type='HungarianAssigner',
|
62 |
-
cls_cost=dict(type='ClassificationCost', weight=1.0),
|
63 |
-
reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
64 |
-
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
|
65 |
-
test_cfg=dict(max_per_img=100))
|
66 |
-
dataset_type = 'CocoDataset'
|
67 |
-
data_root = 'data/coco/'
|
68 |
-
img_norm_cfg = dict(
|
69 |
-
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
70 |
-
train_pipeline = [
|
71 |
-
dict(type='LoadImageFromFile'),
|
72 |
-
dict(type='LoadAnnotations', with_bbox=True),
|
73 |
-
dict(type='RandomFlip', flip_ratio=0.5),
|
74 |
-
dict(
|
75 |
-
type='AutoAugment',
|
76 |
-
policies=[[{
|
77 |
-
'type':
|
78 |
-
'Resize',
|
79 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
|
80 |
-
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
|
81 |
-
(736, 1333), (768, 1333), (800, 1333)],
|
82 |
-
'multiscale_mode':
|
83 |
-
'value',
|
84 |
-
'keep_ratio':
|
85 |
-
True
|
86 |
-
}],
|
87 |
-
[{
|
88 |
-
'type': 'Resize',
|
89 |
-
'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
|
90 |
-
'multiscale_mode': 'value',
|
91 |
-
'keep_ratio': True
|
92 |
-
}, {
|
93 |
-
'type': 'RandomCrop',
|
94 |
-
'crop_type': 'absolute_range',
|
95 |
-
'crop_size': (384, 600),
|
96 |
-
'allow_negative_crop': True
|
97 |
-
}, {
|
98 |
-
'type':
|
99 |
-
'Resize',
|
100 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
101 |
-
(576, 1333), (608, 1333), (640, 1333),
|
102 |
-
(672, 1333), (704, 1333), (736, 1333),
|
103 |
-
(768, 1333), (800, 1333)],
|
104 |
-
'multiscale_mode':
|
105 |
-
'value',
|
106 |
-
'override':
|
107 |
-
True,
|
108 |
-
'keep_ratio':
|
109 |
-
True
|
110 |
-
}]]),
|
111 |
-
dict(
|
112 |
-
type='Normalize',
|
113 |
-
mean=[123.675, 116.28, 103.53],
|
114 |
-
std=[58.395, 57.12, 57.375],
|
115 |
-
to_rgb=True),
|
116 |
-
dict(type='Pad', size_divisor=1),
|
117 |
-
dict(type='DefaultFormatBundle'),
|
118 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
119 |
-
]
|
120 |
-
test_pipeline = [
|
121 |
-
dict(type='LoadImageFromFile'),
|
122 |
-
dict(
|
123 |
-
type='MultiScaleFlipAug',
|
124 |
-
img_scale=(1333, 800),
|
125 |
-
flip=False,
|
126 |
-
transforms=[
|
127 |
-
dict(type='Resize', keep_ratio=True),
|
128 |
-
dict(type='RandomFlip'),
|
129 |
-
dict(
|
130 |
-
type='Normalize',
|
131 |
-
mean=[123.675, 116.28, 103.53],
|
132 |
-
std=[58.395, 57.12, 57.375],
|
133 |
-
to_rgb=True),
|
134 |
-
dict(type='Pad', size_divisor=32),
|
135 |
-
dict(type='ImageToTensor', keys=['img']),
|
136 |
-
dict(type='Collect', keys=['img'])
|
137 |
-
])
|
138 |
-
]
|
139 |
-
data = dict(
|
140 |
-
samples_per_gpu=2,
|
141 |
-
workers_per_gpu=2,
|
142 |
-
train=dict(
|
143 |
-
type='CocoDataset',
|
144 |
-
ann_file='train2017_ratio3size0008@0.5_cluster-id-as-class.json',
|
145 |
-
img_prefix='data/coco/train2017/',
|
146 |
-
pipeline=[
|
147 |
-
dict(type='LoadImageFromFile'),
|
148 |
-
dict(type='LoadAnnotations', with_bbox=True),
|
149 |
-
dict(type='RandomFlip', flip_ratio=0.5),
|
150 |
-
dict(
|
151 |
-
type='AutoAugment',
|
152 |
-
policies=[[{
|
153 |
-
'type':
|
154 |
-
'Resize',
|
155 |
-
'img_scale': [(480, 1333), (512, 1333), (544, 1333),
|
156 |
-
(576, 1333), (608, 1333), (640, 1333),
|
157 |
-
(672, 1333), (704, 1333), (736, 1333),
|
158 |
-
(768, 1333), (800, 1333)],
|
159 |
-
'multiscale_mode':
|
160 |
-
'value',
|
161 |
-
'keep_ratio':
|
162 |
-
True
|
163 |
-
}],
|
164 |
-
[{
|
165 |
-
'type': 'Resize',
|
166 |
-
'img_scale': [(400, 1333), (500, 1333),
|
167 |
-
(600, 1333)],
|
168 |
-
'multiscale_mode': 'value',
|
169 |
-
'keep_ratio': True
|
170 |
-
}, {
|
171 |
-
'type': 'RandomCrop',
|
172 |
-
'crop_type': 'absolute_range',
|
173 |
-
'crop_size': (384, 600),
|
174 |
-
'allow_negative_crop': True
|
175 |
-
}, {
|
176 |
-
'type':
|
177 |
-
'Resize',
|
178 |
-
'img_scale': [(480, 1333), (512, 1333),
|
179 |
-
(544, 1333), (576, 1333),
|
180 |
-
(608, 1333), (640, 1333),
|
181 |
-
(672, 1333), (704, 1333),
|
182 |
-
(736, 1333), (768, 1333),
|
183 |
-
(800, 1333)],
|
184 |
-
'multiscale_mode':
|
185 |
-
'value',
|
186 |
-
'override':
|
187 |
-
True,
|
188 |
-
'keep_ratio':
|
189 |
-
True
|
190 |
-
}]]),
|
191 |
-
dict(
|
192 |
-
type='Normalize',
|
193 |
-
mean=[123.675, 116.28, 103.53],
|
194 |
-
std=[58.395, 57.12, 57.375],
|
195 |
-
to_rgb=True),
|
196 |
-
dict(type='Pad', size_divisor=1),
|
197 |
-
dict(type='DefaultFormatBundle'),
|
198 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
199 |
-
],
|
200 |
-
classes=[
|
201 |
-
'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
|
202 |
-
'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
|
203 |
-
'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14',
|
204 |
-
'cluster_15', 'cluster_16', 'cluster_17', 'cluster_18',
|
205 |
-
'cluster_19', 'cluster_20', 'cluster_21', 'cluster_22',
|
206 |
-
'cluster_23', 'cluster_24', 'cluster_25', 'cluster_26',
|
207 |
-
'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
|
208 |
-
'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34',
|
209 |
-
'cluster_35', 'cluster_36', 'cluster_37', 'cluster_38',
|
210 |
-
'cluster_39', 'cluster_40', 'cluster_41', 'cluster_42',
|
211 |
-
'cluster_43', 'cluster_44', 'cluster_45', 'cluster_46',
|
212 |
-
'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
|
213 |
-
'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54',
|
214 |
-
'cluster_55', 'cluster_56', 'cluster_57', 'cluster_58',
|
215 |
-
'cluster_59', 'cluster_60', 'cluster_61', 'cluster_62',
|
216 |
-
'cluster_63', 'cluster_64', 'cluster_65', 'cluster_66',
|
217 |
-
'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
|
218 |
-
'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74',
|
219 |
-
'cluster_75', 'cluster_76', 'cluster_77', 'cluster_78',
|
220 |
-
'cluster_79', 'cluster_80', 'cluster_81', 'cluster_82',
|
221 |
-
'cluster_83', 'cluster_84', 'cluster_85', 'cluster_86',
|
222 |
-
'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
|
223 |
-
'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94',
|
224 |
-
'cluster_95', 'cluster_96', 'cluster_97', 'cluster_98',
|
225 |
-
'cluster_99', 'cluster_100', 'cluster_101', 'cluster_102',
|
226 |
-
'cluster_103', 'cluster_104', 'cluster_105', 'cluster_106',
|
227 |
-
'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
|
228 |
-
'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114',
|
229 |
-
'cluster_115', 'cluster_116', 'cluster_117', 'cluster_118',
|
230 |
-
'cluster_119', 'cluster_120', 'cluster_121', 'cluster_122',
|
231 |
-
'cluster_123', 'cluster_124', 'cluster_125', 'cluster_126',
|
232 |
-
'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
|
233 |
-
'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134',
|
234 |
-
'cluster_135', 'cluster_136', 'cluster_137', 'cluster_138',
|
235 |
-
'cluster_139', 'cluster_140', 'cluster_141', 'cluster_142',
|
236 |
-
'cluster_143', 'cluster_144', 'cluster_145', 'cluster_146',
|
237 |
-
'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
|
238 |
-
'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154',
|
239 |
-
'cluster_155', 'cluster_156', 'cluster_157', 'cluster_158',
|
240 |
-
'cluster_159', 'cluster_160', 'cluster_161', 'cluster_162',
|
241 |
-
'cluster_163', 'cluster_164', 'cluster_165', 'cluster_166',
|
242 |
-
'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
|
243 |
-
'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174',
|
244 |
-
'cluster_175', 'cluster_176', 'cluster_177', 'cluster_178',
|
245 |
-
'cluster_179', 'cluster_180', 'cluster_181', 'cluster_182',
|
246 |
-
'cluster_183', 'cluster_184', 'cluster_185', 'cluster_186',
|
247 |
-
'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
|
248 |
-
'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194',
|
249 |
-
'cluster_195', 'cluster_196', 'cluster_197', 'cluster_198',
|
250 |
-
'cluster_199', 'cluster_200', 'cluster_201', 'cluster_202',
|
251 |
-
'cluster_203', 'cluster_204', 'cluster_205', 'cluster_206',
|
252 |
-
'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
|
253 |
-
'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214',
|
254 |
-
'cluster_215', 'cluster_216', 'cluster_217', 'cluster_218',
|
255 |
-
'cluster_219', 'cluster_220', 'cluster_221', 'cluster_222',
|
256 |
-
'cluster_223', 'cluster_224', 'cluster_225', 'cluster_226',
|
257 |
-
'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
|
258 |
-
'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234',
|
259 |
-
'cluster_235', 'cluster_236', 'cluster_237', 'cluster_238',
|
260 |
-
'cluster_239', 'cluster_240', 'cluster_241', 'cluster_242',
|
261 |
-
'cluster_243', 'cluster_244', 'cluster_245', 'cluster_246',
|
262 |
-
'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
|
263 |
-
'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254',
|
264 |
-
'cluster_255', 'cluster_256'
|
265 |
-
]),
|
266 |
-
val=dict(
|
267 |
-
type='CocoDataset',
|
268 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
269 |
-
img_prefix='data/coco/val2017/',
|
270 |
-
pipeline=[
|
271 |
-
dict(type='LoadImageFromFile'),
|
272 |
-
dict(
|
273 |
-
type='MultiScaleFlipAug',
|
274 |
-
img_scale=(1333, 800),
|
275 |
-
flip=False,
|
276 |
-
transforms=[
|
277 |
-
dict(type='Resize', keep_ratio=True),
|
278 |
-
dict(type='RandomFlip'),
|
279 |
-
dict(
|
280 |
-
type='Normalize',
|
281 |
-
mean=[123.675, 116.28, 103.53],
|
282 |
-
std=[58.395, 57.12, 57.375],
|
283 |
-
to_rgb=True),
|
284 |
-
dict(type='Pad', size_divisor=32),
|
285 |
-
dict(type='ImageToTensor', keys=['img']),
|
286 |
-
dict(type='Collect', keys=['img'])
|
287 |
-
])
|
288 |
-
]),
|
289 |
-
test=dict(
|
290 |
-
type='CocoDataset',
|
291 |
-
ann_file='data/coco/annotations/instances_val2017.json',
|
292 |
-
img_prefix='data/coco/val2017/',
|
293 |
-
pipeline=[
|
294 |
-
dict(type='LoadImageFromFile'),
|
295 |
-
dict(
|
296 |
-
type='MultiScaleFlipAug',
|
297 |
-
img_scale=(1333, 800),
|
298 |
-
flip=False,
|
299 |
-
transforms=[
|
300 |
-
dict(type='Resize', keep_ratio=True),
|
301 |
-
dict(type='RandomFlip'),
|
302 |
-
dict(
|
303 |
-
type='Normalize',
|
304 |
-
mean=[123.675, 116.28, 103.53],
|
305 |
-
std=[58.395, 57.12, 57.375],
|
306 |
-
to_rgb=True),
|
307 |
-
dict(type='Pad', size_divisor=32),
|
308 |
-
dict(type='ImageToTensor', keys=['img']),
|
309 |
-
dict(type='Collect', keys=['img'])
|
310 |
-
])
|
311 |
-
]))
|
312 |
-
evaluation = dict(
|
313 |
-
interval=65535, metric='bbox', save_best='auto', gpu_collect=True)
|
314 |
-
checkpoint_config = dict(interval=1)
|
315 |
-
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
316 |
-
custom_hooks = [
|
317 |
-
dict(type='NumClassCheckHook'),
|
318 |
-
dict(
|
319 |
-
type='MMDetWandbHook',
|
320 |
-
init_kwargs=dict(project='I2B', group='finetune'),
|
321 |
-
interval=50,
|
322 |
-
num_eval_images=0,
|
323 |
-
log_checkpoint=False)
|
324 |
-
]
|
325 |
-
dist_params = dict(backend='nccl')
|
326 |
-
log_level = 'INFO'
|
327 |
-
load_from = None
|
328 |
-
resume_from = None
|
329 |
-
workflow = [('train', 1)]
|
330 |
-
opencv_num_threads = 0
|
331 |
-
mp_start_method = 'fork'
|
332 |
-
auto_scale_lr = dict(enable=True, base_batch_size=64)
|
333 |
-
custom_imports = dict(
|
334 |
-
imports=[
|
335 |
-
'mmselfsup.datasets.pipelines',
|
336 |
-
'selfsup.core.hook.momentum_update_hook',
|
337 |
-
'selfsup.datasets.pipelines.selfsup_pipelines',
|
338 |
-
'selfsup.datasets.pipelines.rand_aug',
|
339 |
-
'selfsup.datasets.single_view_coco',
|
340 |
-
'selfsup.datasets.multi_view_coco',
|
341 |
-
'selfsup.models.losses.contrastive_loss',
|
342 |
-
'selfsup.models.dense_heads.fcos_head',
|
343 |
-
'selfsup.models.dense_heads.retina_head',
|
344 |
-
'selfsup.models.dense_heads.detr_head',
|
345 |
-
'selfsup.models.dense_heads.deformable_detr_head',
|
346 |
-
'selfsup.models.roi_heads.bbox_heads.convfc_bbox_head',
|
347 |
-
'selfsup.models.roi_heads.standard_roi_head',
|
348 |
-
'selfsup.models.detectors.selfsup_detector',
|
349 |
-
'selfsup.models.detectors.selfsup_fcos',
|
350 |
-
'selfsup.models.detectors.selfsup_detr',
|
351 |
-
'selfsup.models.detectors.selfsup_deformable_detr',
|
352 |
-
'selfsup.models.detectors.selfsup_retinanet',
|
353 |
-
'selfsup.models.detectors.selfsup_mask_rcnn',
|
354 |
-
'selfsup.core.bbox.assigners.hungarian_assigner',
|
355 |
-
'selfsup.core.bbox.assigners.pseudo_hungarian_assigner',
|
356 |
-
'selfsup.core.bbox.match_costs.match_cost'
|
357 |
-
],
|
358 |
-
allow_failed_imports=False)
|
359 |
-
classes = [
|
360 |
-
'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
|
361 |
-
'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
|
362 |
-
'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14', 'cluster_15',
|
363 |
-
'cluster_16', 'cluster_17', 'cluster_18', 'cluster_19', 'cluster_20',
|
364 |
-
'cluster_21', 'cluster_22', 'cluster_23', 'cluster_24', 'cluster_25',
|
365 |
-
'cluster_26', 'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
|
366 |
-
'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34', 'cluster_35',
|
367 |
-
'cluster_36', 'cluster_37', 'cluster_38', 'cluster_39', 'cluster_40',
|
368 |
-
'cluster_41', 'cluster_42', 'cluster_43', 'cluster_44', 'cluster_45',
|
369 |
-
'cluster_46', 'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
|
370 |
-
'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54', 'cluster_55',
|
371 |
-
'cluster_56', 'cluster_57', 'cluster_58', 'cluster_59', 'cluster_60',
|
372 |
-
'cluster_61', 'cluster_62', 'cluster_63', 'cluster_64', 'cluster_65',
|
373 |
-
'cluster_66', 'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
|
374 |
-
'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74', 'cluster_75',
|
375 |
-
'cluster_76', 'cluster_77', 'cluster_78', 'cluster_79', 'cluster_80',
|
376 |
-
'cluster_81', 'cluster_82', 'cluster_83', 'cluster_84', 'cluster_85',
|
377 |
-
'cluster_86', 'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
|
378 |
-
'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94', 'cluster_95',
|
379 |
-
'cluster_96', 'cluster_97', 'cluster_98', 'cluster_99', 'cluster_100',
|
380 |
-
'cluster_101', 'cluster_102', 'cluster_103', 'cluster_104', 'cluster_105',
|
381 |
-
'cluster_106', 'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
|
382 |
-
'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114', 'cluster_115',
|
383 |
-
'cluster_116', 'cluster_117', 'cluster_118', 'cluster_119', 'cluster_120',
|
384 |
-
'cluster_121', 'cluster_122', 'cluster_123', 'cluster_124', 'cluster_125',
|
385 |
-
'cluster_126', 'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
|
386 |
-
'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134', 'cluster_135',
|
387 |
-
'cluster_136', 'cluster_137', 'cluster_138', 'cluster_139', 'cluster_140',
|
388 |
-
'cluster_141', 'cluster_142', 'cluster_143', 'cluster_144', 'cluster_145',
|
389 |
-
'cluster_146', 'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
|
390 |
-
'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154', 'cluster_155',
|
391 |
-
'cluster_156', 'cluster_157', 'cluster_158', 'cluster_159', 'cluster_160',
|
392 |
-
'cluster_161', 'cluster_162', 'cluster_163', 'cluster_164', 'cluster_165',
|
393 |
-
'cluster_166', 'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
|
394 |
-
'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174', 'cluster_175',
|
395 |
-
'cluster_176', 'cluster_177', 'cluster_178', 'cluster_179', 'cluster_180',
|
396 |
-
'cluster_181', 'cluster_182', 'cluster_183', 'cluster_184', 'cluster_185',
|
397 |
-
'cluster_186', 'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
|
398 |
-
'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194', 'cluster_195',
|
399 |
-
'cluster_196', 'cluster_197', 'cluster_198', 'cluster_199', 'cluster_200',
|
400 |
-
'cluster_201', 'cluster_202', 'cluster_203', 'cluster_204', 'cluster_205',
|
401 |
-
'cluster_206', 'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
|
402 |
-
'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214', 'cluster_215',
|
403 |
-
'cluster_216', 'cluster_217', 'cluster_218', 'cluster_219', 'cluster_220',
|
404 |
-
'cluster_221', 'cluster_222', 'cluster_223', 'cluster_224', 'cluster_225',
|
405 |
-
'cluster_226', 'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
|
406 |
-
'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234', 'cluster_235',
|
407 |
-
'cluster_236', 'cluster_237', 'cluster_238', 'cluster_239', 'cluster_240',
|
408 |
-
'cluster_241', 'cluster_242', 'cluster_243', 'cluster_244', 'cluster_245',
|
409 |
-
'cluster_246', 'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
|
410 |
-
'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254', 'cluster_255',
|
411 |
-
'cluster_256'
|
412 |
-
]
|
413 |
-
optimizer = dict(
|
414 |
-
type='AdamW',
|
415 |
-
lr=0.0002,
|
416 |
-
weight_decay=0.0001,
|
417 |
-
paramwise_cfg=dict(
|
418 |
-
custom_keys=dict(backbone=dict(lr_mult=0, decay_mult=0))))
|
419 |
-
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
|
420 |
-
lr_config = dict(policy='step', step=[40])
|
421 |
-
runner = dict(type='EpochBasedRunner', max_epochs=50)
|
422 |
-
work_dir = 'work_dirs/selfsup_detr_cluster-ids-as-pseudo-labels'
|
423 |
-
auto_resume = False
|
424 |
-
gpu_ids = range(0, 32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|