|
model = dict( |
|
type='DETR', |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(3, ), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='SyncBN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
|
bbox_head=dict( |
|
type='DETRHead', |
|
num_classes=20, |
|
in_channels=2048, |
|
transformer=dict( |
|
type='Transformer', |
|
encoder=dict( |
|
type='DetrTransformerEncoder', |
|
num_layers=6, |
|
transformerlayers=dict( |
|
type='BaseTransformerLayer', |
|
attn_cfgs=[ |
|
dict( |
|
type='MultiheadAttention', |
|
embed_dims=256, |
|
num_heads=8, |
|
dropout=0.1) |
|
], |
|
feedforward_channels=2048, |
|
ffn_dropout=0.1, |
|
operation_order=('self_attn', 'norm', 'ffn', 'norm'))), |
|
decoder=dict( |
|
type='DetrTransformerDecoder', |
|
return_intermediate=True, |
|
num_layers=6, |
|
transformerlayers=dict( |
|
type='DetrTransformerDecoderLayer', |
|
attn_cfgs=dict( |
|
type='MultiheadAttention', |
|
embed_dims=256, |
|
num_heads=8, |
|
dropout=0.1), |
|
feedforward_channels=2048, |
|
ffn_dropout=0.1, |
|
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', |
|
'ffn', 'norm')))), |
|
positional_encoding=dict( |
|
type='SinePositionalEncoding', num_feats=128, normalize=True), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
bg_cls_weight=0.1, |
|
use_sigmoid=False, |
|
loss_weight=1.0, |
|
class_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), |
|
train_cfg=dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
cls_cost=dict(type='ClassificationCost', weight=1.0), |
|
reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), |
|
test_cfg=dict(max_per_img=100)) |
|
dataset_type = 'VOCDataset' |
|
data_root = 'data/VOCdevkit/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576), |
|
(1333, 608), (1333, 640), (1333, 672), (1333, 704), |
|
(1333, 736), (1333, 768), (1333, 800)], |
|
multiscale_mode='value', |
|
keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict( |
|
type='VOCDataset', |
|
ann_file=[ |
|
'data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt', |
|
'data/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt' |
|
], |
|
img_prefix=['data/VOCdevkit/VOC2007/', 'data/VOCdevkit/VOC2012/'], |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576), |
|
(1333, 608), (1333, 640), (1333, 672), (1333, 704), |
|
(1333, 736), (1333, 768), (1333, 800)], |
|
multiscale_mode='value', |
|
keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) |
|
]), |
|
val=dict( |
|
type='VOCDataset', |
|
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', |
|
img_prefix='data/VOCdevkit/VOC2007/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
]), |
|
test=dict( |
|
type='VOCDataset', |
|
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt', |
|
img_prefix='data/VOCdevkit/VOC2007/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
])) |
|
evaluation = dict(interval=1, metric='mAP', save_best='auto') |
|
checkpoint_config = dict(interval=1) |
|
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) |
|
custom_hooks = [ |
|
dict(type='NumClassCheckHook'), |
|
dict( |
|
type='MMDetWandbHook', |
|
init_kwargs=dict(project='I2B', group='finetune'), |
|
interval=50, |
|
num_eval_images=0, |
|
log_checkpoint=False) |
|
] |
|
dist_params = dict(backend='nccl') |
|
log_level = 'INFO' |
|
load_from = 'pretrain/selfsup_detr_clusters-as-classes_add-contrastive-temp0.5-weight1.0/final_model.pth' |
|
resume_from = None |
|
workflow = [('train', 1)] |
|
opencv_num_threads = 0 |
|
mp_start_method = 'fork' |
|
auto_scale_lr = dict(enable=False, base_batch_size=16) |
|
custom_imports = None |
|
norm_cfg = dict(type='SyncBN', requires_grad=True) |
|
optimizer = dict( |
|
type='AdamW', |
|
lr=0.0001, |
|
weight_decay=0.0001, |
|
paramwise_cfg=dict( |
|
custom_keys=dict(backbone=dict(lr_mult=0.1, decay_mult=1.0)))) |
|
optimizer_config = dict(grad_clip=None) |
|
lr_config = dict(policy='step', step=[70]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=100) |
|
work_dir = 'work_dirs/finetune_detr_100e_voc0712' |
|
auto_resume = False |
|
gpu_ids = range(0, 8) |
|
|