Hjgugugjhuhjggg
commited on
Commit
•
0b77f45
1
Parent(s):
d0dc403
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import uuid
|
4 |
-
import requests
|
5 |
-
import threading
|
6 |
import logging
|
|
|
7 |
from fastapi import FastAPI, HTTPException
|
8 |
from pydantic import BaseModel
|
9 |
from google.cloud import storage
|
10 |
from google.auth import exceptions
|
11 |
-
from transformers import pipeline
|
12 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import uvicorn
|
|
|
|
|
14 |
|
15 |
-
# Configuración de carga de variables de entorno
|
16 |
load_dotenv()
|
17 |
|
18 |
API_KEY = os.getenv("API_KEY")
|
@@ -20,11 +26,10 @@ GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
|
20 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
21 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
22 |
|
23 |
-
# Configuración del logger
|
24 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
#
|
28 |
try:
|
29 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
30 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
@@ -50,6 +55,14 @@ class GCSHandler:
|
|
50 |
logger.debug(f"Comprobando existencia de archivo '{blob_name}': {exists}")
|
51 |
return exists
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def upload_file(self, blob_name, file_stream):
|
54 |
blob = self.bucket.blob(blob_name)
|
55 |
try:
|
@@ -59,14 +72,6 @@ class GCSHandler:
|
|
59 |
logger.error(f"Error subiendo el archivo '{blob_name}' a GCS: {e}")
|
60 |
raise HTTPException(status_code=500, detail=f"Error subiendo archivo '{blob_name}' a GCS")
|
61 |
|
62 |
-
def download_file(self, blob_name):
|
63 |
-
blob = self.bucket.blob(blob_name)
|
64 |
-
if not blob.exists():
|
65 |
-
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.")
|
66 |
-
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
67 |
-
logger.debug(f"Descargando archivo '{blob_name}' de GCS.")
|
68 |
-
return blob.open("rb") # Abre el archivo en modo lectura de bytes
|
69 |
-
|
70 |
def generate_signed_url(self, blob_name, expiration=3600):
|
71 |
blob = self.bucket.blob(blob_name)
|
72 |
url = blob.generate_signed_url(expiration=expiration)
|
@@ -86,6 +91,7 @@ def download_model_from_huggingface(model_name):
|
|
86 |
"config.json",
|
87 |
"tokenizer.json",
|
88 |
"model.safetensors",
|
|
|
89 |
]
|
90 |
for file_name in model_files:
|
91 |
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}"
|
@@ -102,109 +108,98 @@ def download_model_from_huggingface(model_name):
|
|
102 |
logger.error(f"Error descargando archivos de Hugging Face: {e}")
|
103 |
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}")
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
@app.post("/predict/")
|
106 |
async def predict(request: DownloadModelRequest):
|
107 |
logger.info(f"Iniciando predicción para el modelo '{request.model_name}' con tarea '{request.pipeline_task}'...")
|
108 |
try:
|
109 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
110 |
model_prefix = request.model_name
|
111 |
-
|
112 |
-
|
113 |
-
"config.json",
|
114 |
-
"tokenizer.json",
|
115 |
-
"model.safetensors",
|
116 |
-
]
|
117 |
-
|
118 |
-
model_files_exist = all(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files)
|
119 |
-
|
120 |
-
if not model_files_exist:
|
121 |
-
logger.info(f"Modelos no encontrados en GCS, descargando '{model_prefix}' desde Hugging Face...")
|
122 |
-
download_model_from_huggingface(model_prefix)
|
123 |
-
|
124 |
-
model_files_streams = {file: gcs_handler.download_file(f"{model_prefix}/{file}") for file in model_files if gcs_handler.file_exists(f"{model_prefix}/{file}")}
|
125 |
-
|
126 |
-
config_stream = model_files_streams.get("config.json")
|
127 |
-
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
128 |
-
model_stream = model_files_streams.get("pytorch_model.bin")
|
129 |
-
|
130 |
-
if not config_stream or not tokenizer_stream or not model_stream:
|
131 |
-
logger.error(f"Faltan archivos necesarios para el modelo '{model_prefix}'.")
|
132 |
-
raise HTTPException(status_code=500, detail="Required model files missing.")
|
133 |
|
134 |
-
#
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
result = pipe(request.input_text)
|
138 |
-
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}")
|
139 |
-
return {"response": result[0]}
|
140 |
-
|
141 |
-
# Tareas de imagen
|
142 |
elif request.pipeline_task == "image-generation":
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
except Exception as e:
|
173 |
-
logger.error(f"Error editando la imagen: {e}")
|
174 |
-
raise HTTPException(status_code=400, detail="Error editando la imagen.")
|
175 |
-
|
176 |
-
elif request.pipeline_task == "image-to-image":
|
177 |
-
try:
|
178 |
-
pipe = pipeline("image-to-image", model=model_stream)
|
179 |
-
transformed_images = pipe(request.input_text)
|
180 |
-
transformed_image = transformed_images[0]
|
181 |
-
transformed_image_filename = f"{uuid.uuid4().hex}_transformed.png"
|
182 |
-
transformed_image.save(transformed_image_filename)
|
183 |
-
|
184 |
-
gcs_handler.upload_file(f"images/{transformed_image_filename}", open(transformed_image_filename, "rb"))
|
185 |
-
transformed_image_url = gcs_handler.generate_signed_url(f"images/{transformed_image_filename}")
|
186 |
-
logger.info(f"Imagen transformada y subida correctamente con URL: {transformed_image_url}")
|
187 |
-
return {"response": {"transformed_image_url": transformed_image_url}}
|
188 |
-
except Exception as e:
|
189 |
-
logger.error(f"Error transformando la imagen: {e}")
|
190 |
-
raise HTTPException(status_code=400, detail="Error transformando la imagen.")
|
191 |
-
|
192 |
-
# Tarea de generación de modelo 3D (simulada)
|
193 |
-
elif request.pipeline_task == "text-to-3d":
|
194 |
-
try:
|
195 |
-
model_3d_filename = f"{uuid.uuid4().hex}.obj"
|
196 |
-
model_3d_path = f"3d-models/{model_3d_filename}"
|
197 |
-
with open(model_3d_path, "w") as f:
|
198 |
-
f.write("Simulated 3D model data")
|
199 |
-
|
200 |
-
gcs_handler.upload_file(f"3d-models/{model_3d_filename}", open(model_3d_path, "rb"))
|
201 |
-
model_3d_url = gcs_handler.generate_signed_url(f"3d-models/{model_3d_filename}")
|
202 |
-
logger.info(f"Modelo 3D generado y subido con URL: {model_3d_url}")
|
203 |
-
return {"response": {"model_3d_url": model_3d_url}}
|
204 |
-
except Exception as e:
|
205 |
-
logger.error(f"Error generando el modelo 3D: {e}")
|
206 |
-
raise HTTPException(status_code=400, detail="Error generando el modelo 3D.")
|
207 |
-
|
208 |
except HTTPException as e:
|
209 |
logger.error(f"HTTPException: {e.detail}")
|
210 |
raise e
|
@@ -212,29 +207,18 @@ async def predict(request: DownloadModelRequest):
|
|
212 |
logger.error(f"Error inesperado: {e}")
|
213 |
raise HTTPException(status_code=500, detail=f"Error: {e}")
|
214 |
|
215 |
-
|
216 |
-
def download_all_models_in_background():
|
217 |
-
models_url = "https://huggingface.co/api/models"
|
218 |
try:
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
|
224 |
-
|
225 |
-
models = response.json()
|
226 |
-
for model in models:
|
227 |
-
model_name = model["id"]
|
228 |
-
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...")
|
229 |
-
download_model_from_huggingface(model_name)
|
230 |
except Exception as e:
|
231 |
-
logger.error(f"Error al descargar
|
232 |
-
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
|
233 |
|
234 |
-
# Iniciar la descarga de modelos en segundo plano
|
235 |
def run_in_background():
|
236 |
logger.info("Iniciando la descarga de modelos en segundo plano...")
|
237 |
-
threading.Thread(target=
|
238 |
|
239 |
@app.on_event("startup")
|
240 |
async def startup_event():
|
@@ -242,4 +226,3 @@ async def startup_event():
|
|
242 |
|
243 |
if __name__ == "__main__":
|
244 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
245 |
-
|
|
|
1 |
import os
|
2 |
import json
|
|
|
|
|
|
|
3 |
import logging
|
4 |
+
import io
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
from google.cloud import storage
|
8 |
from google.auth import exceptions
|
9 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
10 |
from dotenv import load_dotenv
|
11 |
+
import torch
|
12 |
+
import safetensors.torch
|
13 |
+
import requests
|
14 |
+
from diffusers import StableDiffusionPipeline
|
15 |
+
from audiocraft.models import AudioLM
|
16 |
+
import asyncio
|
17 |
+
import threading
|
18 |
import uvicorn
|
19 |
+
from transformers import pipeline as tts_pipeline
|
20 |
+
import soundfile as sf # Para manejar el audio de salida
|
21 |
|
|
|
22 |
load_dotenv()
|
23 |
|
24 |
API_KEY = os.getenv("API_KEY")
|
|
|
26 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
27 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
28 |
|
|
|
29 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
30 |
logger = logging.getLogger(__name__)
|
31 |
|
32 |
+
# Configuración de GCS
|
33 |
try:
|
34 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
35 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
|
|
55 |
logger.debug(f"Comprobando existencia de archivo '{blob_name}': {exists}")
|
56 |
return exists
|
57 |
|
58 |
+
def download_file_as_stream(self, blob_name):
|
59 |
+
blob = self.bucket.blob(blob_name)
|
60 |
+
if not blob.exists():
|
61 |
+
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.")
|
62 |
+
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
63 |
+
logger.debug(f"Descargando archivo '{blob_name}' de GCS.")
|
64 |
+
return blob.open("rb") # Devuelve un stream (modo lectura binaria)
|
65 |
+
|
66 |
def upload_file(self, blob_name, file_stream):
|
67 |
blob = self.bucket.blob(blob_name)
|
68 |
try:
|
|
|
72 |
logger.error(f"Error subiendo el archivo '{blob_name}' a GCS: {e}")
|
73 |
raise HTTPException(status_code=500, detail=f"Error subiendo archivo '{blob_name}' a GCS")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def generate_signed_url(self, blob_name, expiration=3600):
|
76 |
blob = self.bucket.blob(blob_name)
|
77 |
url = blob.generate_signed_url(expiration=expiration)
|
|
|
91 |
"config.json",
|
92 |
"tokenizer.json",
|
93 |
"model.safetensors",
|
94 |
+
"pytorch_model.bin"
|
95 |
]
|
96 |
for file_name in model_files:
|
97 |
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}"
|
|
|
108 |
logger.error(f"Error descargando archivos de Hugging Face: {e}")
|
109 |
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}")
|
110 |
|
111 |
+
def load_model_from_gcs(model_name, gcs_handler):
|
112 |
+
model_files = {
|
113 |
+
"config": f"{model_name}/config.json",
|
114 |
+
"tokenizer": f"{model_name}/tokenizer.json",
|
115 |
+
"model_bin": f"{model_name}/pytorch_model.bin",
|
116 |
+
"model_safetensors": f"{model_name}/model.safetensors"
|
117 |
+
}
|
118 |
+
|
119 |
+
model_data = {}
|
120 |
+
for key, blob_name in model_files.items():
|
121 |
+
if not gcs_handler.file_exists(blob_name):
|
122 |
+
logger.info(f"{key.capitalize()} no encontrado en GCS, descargando desde Hugging Face...")
|
123 |
+
download_model_from_huggingface(model_name)
|
124 |
+
model_data[key] = gcs_handler.download_file_as_stream(blob_name)
|
125 |
+
|
126 |
+
return model_data
|
127 |
+
|
128 |
+
def load_diffuser_model_from_streams(model_data, model_name):
|
129 |
+
model_bin_stream = model_data.get("model_bin")
|
130 |
+
model_safetensors_stream = model_data.get("model_safetensors")
|
131 |
+
|
132 |
+
if model_bin_stream or model_safetensors_stream:
|
133 |
+
# Cargar el modelo de difusión desde los streams de GCS
|
134 |
+
logger.info(f"Cargando modelo Diffusers para '{model_name}'...")
|
135 |
+
pipe = StableDiffusionPipeline.from_pretrained(io.BytesIO(model_bin_stream.read()))
|
136 |
+
else:
|
137 |
+
raise HTTPException(status_code=404, detail="No se encontró modelo compatible en el bucket.")
|
138 |
+
|
139 |
+
return pipe
|
140 |
+
|
141 |
+
def load_audiocraft_model_from_streams(model_data, model_name):
|
142 |
+
model_bin_stream = model_data.get("model_bin")
|
143 |
+
model_safetensors_stream = model_data.get("model_safetensors")
|
144 |
+
|
145 |
+
if model_bin_stream or model_safetensors_stream:
|
146 |
+
# Cargar el modelo AudioCraft desde los streams de GCS
|
147 |
+
logger.info(f"Cargando modelo Audiocraft para '{model_name}'...")
|
148 |
+
model = AudioLM.from_pretrained(io.BytesIO(model_bin_stream.read()))
|
149 |
+
else:
|
150 |
+
raise HTTPException(status_code=404, detail="No se encontró modelo compatible en el bucket.")
|
151 |
+
|
152 |
+
return model
|
153 |
+
|
154 |
@app.post("/predict/")
|
155 |
async def predict(request: DownloadModelRequest):
|
156 |
logger.info(f"Iniciando predicción para el modelo '{request.model_name}' con tarea '{request.pipeline_task}'...")
|
157 |
try:
|
158 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
159 |
model_prefix = request.model_name
|
160 |
+
|
161 |
+
model_data = load_model_from_gcs(model_prefix, gcs_handler)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
# Cargar los archivos de modelo y tokenizer directamente desde los streams
|
164 |
+
config_stream = model_data["config"]
|
165 |
+
tokenizer_stream = model_data["tokenizer"]
|
166 |
+
|
167 |
+
if request.pipeline_task == "text-generation":
|
168 |
+
# Usar el modelo HuggingFace normal si es una tarea de texto
|
169 |
+
model = load_model_from_streams(model_data, model_prefix)
|
170 |
+
tokenizer = AutoTokenizer.from_pretrained(io.BytesIO(tokenizer_stream.read()))
|
171 |
+
pipe = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
172 |
result = pipe(request.input_text)
|
|
|
|
|
|
|
|
|
173 |
elif request.pipeline_task == "image-generation":
|
174 |
+
# Usar el modelo Diffuser si es tarea de generación de imágenes
|
175 |
+
pipe = load_diffuser_model_from_streams(model_data, model_prefix)
|
176 |
+
result = pipe(request.input_text).images
|
177 |
+
elif request.pipeline_task == "audio-generation":
|
178 |
+
# Usar el modelo Audiocraft si es tarea de generación de audio
|
179 |
+
model = load_audiocraft_model_from_streams(model_data, model_prefix)
|
180 |
+
result = model.generate(request.input_text)
|
181 |
+
elif request.pipeline_task == "text-to-speech":
|
182 |
+
# TTS pipeline utilizando transformers
|
183 |
+
tts_pipe = tts_pipeline("text-to-speech", model=model, tokenizer=tokenizer)
|
184 |
+
audio_output = tts_pipe(request.input_text)[0]['audio']
|
185 |
+
# Se devuelve el archivo de audio
|
186 |
+
audio_path = "output.wav"
|
187 |
+
sf.write(audio_path, audio_output, 16000) # Guardar el audio en un archivo
|
188 |
+
result = audio_path
|
189 |
+
elif request.pipeline_task == "text-to-audio":
|
190 |
+
# Usar audiocraft o modelo específico para text-to-audio
|
191 |
+
model = load_audiocraft_model_from_streams(model_data, model_prefix)
|
192 |
+
audio_output = model.generate(request.input_text)
|
193 |
+
# Guardar o procesar el audio de salida
|
194 |
+
audio_path = "output_audio.wav"
|
195 |
+
sf.write(audio_path, audio_output, 16000)
|
196 |
+
result = audio_path
|
197 |
+
else:
|
198 |
+
raise HTTPException(status_code=400, detail="Tarea no soportada.")
|
199 |
+
|
200 |
+
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}")
|
201 |
+
return {"response": result[0]}
|
202 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
except HTTPException as e:
|
204 |
logger.error(f"HTTPException: {e.detail}")
|
205 |
raise e
|
|
|
207 |
logger.error(f"Error inesperado: {e}")
|
208 |
raise HTTPException(status_code=500, detail=f"Error: {e}")
|
209 |
|
210 |
+
def download_model_in_background(model_name):
|
|
|
|
|
211 |
try:
|
212 |
+
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
213 |
+
logger.info(f"Iniciando descarga en segundo plano del modelo '{model_name}' a GCS...")
|
214 |
+
download_model_from_huggingface(model_name)
|
215 |
+
logger.info(f"Descarga del modelo '{model_name}' completada.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
except Exception as e:
|
217 |
+
logger.error(f"Error al descargar el modelo '{model_name}' en segundo plano: {e}")
|
|
|
218 |
|
|
|
219 |
def run_in_background():
|
220 |
logger.info("Iniciando la descarga de modelos en segundo plano...")
|
221 |
+
threading.Thread(target=download_model_in_background, args=("modelo_ejemplo",)).start()
|
222 |
|
223 |
@app.on_event("startup")
|
224 |
async def startup_event():
|
|
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|