|
import os |
|
import json |
|
import threading |
|
import logging |
|
from google.cloud import storage |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from pydantic import BaseModel |
|
from fastapi import FastAPI, HTTPException |
|
import requests |
|
import uvicorn |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
return self.bucket.blob(blob_name).exists() |
|
|
|
def create_folder_if_not_exists(self, folder_name): |
|
if not self.file_exists(folder_name): |
|
self.bucket.blob(folder_name + "/").upload_from_string("") |
|
|
|
def upload_file(self, blob_name, file_stream): |
|
self.create_folder_if_not_exists(os.path.dirname(blob_name)) |
|
blob = self.bucket.blob(blob_name) |
|
blob.upload_from_file(file_stream) |
|
|
|
def download_file(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.") |
|
return blob.open("rb") |
|
|
|
def generate_signed_url(self, blob_name, expiration=3600): |
|
blob = self.bucket.blob(blob_name) |
|
return blob.generate_signed_url(expiration=expiration) |
|
|
|
def download_model_from_huggingface(model_name): |
|
url = f"https://huggingface.co/{model_name}/tree/main" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
response = requests.get(url, headers=headers) |
|
if response.status_code == 200: |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
for file_name in model_files: |
|
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}" |
|
file_content = requests.get(file_url).content |
|
blob_name = f"models/{model_name}/{file_name}" |
|
bucket.blob(blob_name).upload_from_string(file_content) |
|
else: |
|
raise HTTPException(status_code=404, detail="Error accessing Hugging Face model files.") |
|
|
|
def download_and_verify_model(model_name): |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
if not all(gcs_handler.file_exists(f"models/{model_name}/{file}") for file in model_files): |
|
download_model_from_huggingface(model_name) |
|
|
|
def load_model_from_gcs(model_name): |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_files_streams = { |
|
file: gcs_handler.download_file(f"models/{model_name}/{file}") |
|
for file in model_files if gcs_handler.file_exists(f"models/{model_name}/{file}") |
|
} |
|
model_stream = model_files_streams.get("pytorch_model.bin") or model_files_streams.get("model.safetensors") |
|
tokenizer_stream = model_files_streams.get("tokenizer.json") |
|
config_stream = model_files_streams.get("config.json") |
|
model = AutoModelForCausalLM.from_pretrained(model_stream, config=config_stream) |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) |
|
return model, tokenizer |
|
|
|
def load_model(model_name): |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
try: |
|
return load_model_from_gcs(model_name) |
|
except HTTPException: |
|
download_and_verify_model(model_name) |
|
return load_model_from_gcs(model_name) |
|
|
|
@app.on_event("startup") |
|
async def startup(): |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
blobs = list(bucket.list_blobs(prefix="models/")) |
|
model_names = set(blob.name.split("/")[1] for blob in blobs) |
|
def download_model_thread(model_name): |
|
try: |
|
download_and_verify_model(model_name) |
|
except Exception as e: |
|
logger.error(f"Error downloading model '{model_name}': {e}") |
|
threads = [threading.Thread(target=download_model_thread, args=(model_name,)) for model_name in model_names] |
|
for thread in threads: |
|
thread.start() |
|
for thread in threads: |
|
thread.join() |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
model_name = request.model_name |
|
pipeline_task = request.pipeline_task |
|
input_text = request.input_text |
|
model, tokenizer = load_model(model_name) |
|
pipe = pipeline(pipeline_task, model=model, tokenizer=tokenizer) |
|
result = pipe(input_text) |
|
return {"result": result} |
|
|
|
def download_all_models_in_background(): |
|
models_url = "https://huggingface.co/api/models" |
|
response = requests.get(models_url) |
|
if response.status_code == 200: |
|
models = response.json() |
|
for model in models: |
|
download_model_from_huggingface(model["id"]) |
|
|
|
def run_in_background(): |
|
threading.Thread(target=download_all_models_in_background, daemon=True).start() |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|