|
import os |
|
import json |
|
import logging |
|
import uuid |
|
import threading |
|
import io |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from google.cloud import storage |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import uvicorn |
|
import torch |
|
import requests |
|
from safetensors import safe_open |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
try: |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
logger.info(f"Conexión con Google Cloud Storage exitosa. Bucket: {GCS_BUCKET_NAME}") |
|
except (json.JSONDecodeError, KeyError, ValueError) as e: |
|
logger.error(f"Error al cargar las credenciales o bucket: {e}") |
|
raise RuntimeError(f"Error al cargar las credenciales o bucket: {e}") |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
return self.bucket.blob(blob_name).exists() |
|
|
|
def download_file(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.") |
|
return blob.download_as_bytes() |
|
|
|
def upload_file(self, blob_name, file_data): |
|
blob = self.bucket.blob(blob_name) |
|
blob.upload_from_file(file_data) |
|
|
|
def generate_signed_url(self, blob_name, expiration=3600): |
|
blob = self.bucket.blob(blob_name) |
|
return blob.generate_signed_url(expiration=expiration) |
|
|
|
def create_folder(self, folder_name): |
|
blob = self.bucket.blob(folder_name + "/") |
|
blob.upload_from_string("") |
|
|
|
def load_model_from_gcs(model_name: str, model_files: list): |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_blobs = {file: gcs_handler.download_file(f"{model_name}/{file}") for file in model_files} |
|
|
|
model_stream = model_blobs.get("pytorch_model.bin") or model_blobs.get("model.safetensors") |
|
config_stream = model_blobs.get("config.json") |
|
tokenizer_stream = model_blobs.get("tokenizer.json") |
|
|
|
if model_stream and model_stream.endswith(".safetensors"): |
|
model = load_safetensors_model(model_stream) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(io.BytesIO(model_stream), config=config_stream) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(io.BytesIO(tokenizer_stream)) |
|
|
|
return model, tokenizer |
|
|
|
def load_safetensors_model(model_stream): |
|
with safe_open(io.BytesIO(model_stream), framework="pt") as model_data: |
|
model = torch.load(model_data) |
|
return model |
|
|
|
def get_model_files_from_gcs(model_name: str): |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
blob_list = list(gcs_handler.bucket.list_blobs(prefix=f"{model_name}/")) |
|
model_files = [blob.name for blob in blob_list if any(part in blob.name for part in ["pytorch_model", "model"]) and "index" not in blob.name] |
|
model_files = sorted(model_files) |
|
return model_files |
|
|
|
def download_model_from_huggingface(model_name): |
|
url = f"https://huggingface.co/{model_name}/tree/main" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
|
|
try: |
|
response = requests.get(url, headers=headers) |
|
if response.status_code == 200: |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
def download_file(file_name): |
|
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}" |
|
file_content = requests.get(file_url).content |
|
blob_name = f"{model_name}/{file_name}" |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_string(file_content) |
|
|
|
threads = [threading.Thread(target=download_file, args=(file_name,)) for file_name in model_files] |
|
for thread in threads: |
|
thread.start() |
|
for thread in threads: |
|
thread.join() |
|
else: |
|
raise HTTPException(status_code=404, detail="Error al acceder al árbol de archivos de Hugging Face.") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}") |
|
|
|
def download_model_files(model_name: str): |
|
model_files = get_model_files_from_gcs(model_name) |
|
if not model_files: |
|
download_model_from_huggingface(model_name) |
|
model_files = get_model_files_from_gcs(model_name) |
|
return model_files |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
try: |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_prefix = request.model_name |
|
|
|
model_files = download_model_files(model_prefix) |
|
model, tokenizer = load_model_from_gcs(model_prefix, model_files) |
|
|
|
pipe = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer) |
|
|
|
if request.pipeline_task in ["text-generation", "translation", "summarization"]: |
|
result = pipe(request.input_text) |
|
return {"response": result[0]} |
|
|
|
elif request.pipeline_task == "image-generation": |
|
images = pipe(request.input_text) |
|
image = images[0] |
|
image_filename = f"{uuid.uuid4().hex}.png" |
|
image_path = f"images/{image_filename}" |
|
image.save(image_path) |
|
gcs_handler.upload_file(image_path, open(image_path, "rb")) |
|
image_url = gcs_handler.generate_signed_url(image_path) |
|
return {"response": {"image_url": image_url}} |
|
|
|
elif request.pipeline_task == "image-editing": |
|
edited_images = pipe(request.input_text) |
|
edited_image = edited_images[0] |
|
edited_image_filename = f"{uuid.uuid4().hex}_edited.png" |
|
edited_image.save(edited_image_filename) |
|
gcs_handler.upload_file(f"images/{edited_image_filename}", open(edited_image_filename, "rb")) |
|
edited_image_url = gcs_handler.generate_signed_url(f"images/{edited_image_filename}") |
|
return {"response": {"edited_image_url": edited_image_url}} |
|
|
|
elif request.pipeline_task == "image-to-image": |
|
transformed_images = pipe(request.input_text) |
|
transformed_image = transformed_images[0] |
|
transformed_image_filename = f"{uuid.uuid4().hex}_transformed.png" |
|
transformed_image.save(transformed_image_filename) |
|
gcs_handler.upload_file(f"images/{transformed_image_filename}", open(transformed_image_filename, "rb")) |
|
transformed_image_url = gcs_handler.generate_signed_url(f"images/{transformed_image_filename}") |
|
return {"response": {"transformed_image_url": transformed_image_url}} |
|
|
|
elif request.pipeline_task == "text-to-3d": |
|
model_3d_filename = f"{uuid.uuid4().hex}.obj" |
|
model_3d_path = f"3d-models/{model_3d_filename}" |
|
with open(model_3d_path, "w") as f: |
|
f.write("Simulated 3D model data") |
|
gcs_handler.upload_file(f"3d-models/{model_3d_filename}", open(model_3d_path, "rb")) |
|
model_3d_url = gcs_handler.generate_signed_url(f"3d-models/{model_3d_filename}") |
|
return {"response": {"model_3d_url": model_3d_url}} |
|
|
|
except HTTPException as e: |
|
raise e |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error: {e}") |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
logger.info("Iniciando la API...") |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|