|
from LIA_Model import LIA_Model |
|
import torch |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import argparse |
|
import numpy as np |
|
from torchvision import transforms |
|
from templates import * |
|
import argparse |
|
import shutil |
|
from moviepy.editor import * |
|
import librosa |
|
import python_speech_features |
|
import importlib.util |
|
import time |
|
|
|
def check_package_installed(package_name): |
|
package_spec = importlib.util.find_spec(package_name) |
|
if package_spec is None: |
|
print(f"{package_name} is not installed.") |
|
return False |
|
else: |
|
print(f"{package_name} is installed.") |
|
return True |
|
|
|
def frames_to_video(input_path, audio_path, output_path, fps=25): |
|
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))] |
|
clips = [ImageClip(m).set_duration(1/fps) for m in image_files] |
|
video = concatenate_videoclips(clips, method="compose") |
|
|
|
audio = AudioFileClip(audio_path) |
|
final_video = video.set_audio(audio) |
|
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac') |
|
|
|
def load_image(filename, size): |
|
img = Image.open(filename).convert('RGB') |
|
img = img.resize((size, size)) |
|
img = np.asarray(img) |
|
img = np.transpose(img, (2, 0, 1)) |
|
return img / 255.0 |
|
|
|
def img_preprocessing(img_path, size): |
|
img = load_image(img_path, size) |
|
img = torch.from_numpy(img).unsqueeze(0).float() |
|
imgs_norm = (img - 0.5) * 2.0 |
|
return imgs_norm |
|
|
|
def saved_image(img_tensor, img_path): |
|
toPIL = transforms.ToPILImage() |
|
img = toPIL(img_tensor.detach().cpu().squeeze(0)) |
|
img.save(img_path) |
|
|
|
def main(args): |
|
frames_result_saved_path = os.path.join(args.result_path, 'frames') |
|
os.makedirs(frames_result_saved_path, exist_ok=True) |
|
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0] |
|
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0] |
|
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4') |
|
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4') |
|
|
|
|
|
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum') |
|
lia.load_lightning_model(args.stage1_checkpoint_path) |
|
lia.to(args.device) |
|
|
|
|
|
conf = ffhq256_autoenc() |
|
conf.seed = args.seed |
|
conf.decoder_layers = args.decoder_layers |
|
conf.infer_type = args.infer_type |
|
conf.motion_dim = args.motion_dim |
|
|
|
if args.infer_type == 'mfcc_full_control': |
|
conf.face_location=True |
|
conf.face_scale=True |
|
conf.mfcc = True |
|
|
|
elif args.infer_type == 'mfcc_pose_only': |
|
conf.face_location=False |
|
conf.face_scale=False |
|
conf.mfcc = True |
|
|
|
elif args.infer_type == 'hubert_pose_only': |
|
conf.face_location=False |
|
conf.face_scale=False |
|
conf.mfcc = False |
|
|
|
elif args.infer_type == 'hubert_audio_only': |
|
conf.face_location=False |
|
conf.face_scale=False |
|
conf.mfcc = False |
|
|
|
elif args.infer_type == 'hubert_full_control': |
|
conf.face_location=True |
|
conf.face_scale=True |
|
conf.mfcc = False |
|
|
|
else: |
|
print('Type NOT Found!') |
|
exit(0) |
|
|
|
if not os.path.exists(args.test_image_path): |
|
print(f'{args.test_image_path} does not exist!') |
|
exit(0) |
|
|
|
if not os.path.exists(args.test_audio_path): |
|
print(f'{args.test_audio_path} does not exist!') |
|
exit(0) |
|
|
|
img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device) |
|
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source) |
|
|
|
|
|
|
|
model = LitModel(conf) |
|
state = torch.load(args.stage2_checkpoint_path, map_location='cpu') |
|
model.load_state_dict(state, strict=True) |
|
model.ema_model.eval() |
|
model.ema_model.to(args.device); |
|
|
|
|
|
|
|
|
|
if conf.infer_type.startswith('mfcc'): |
|
|
|
wav, sr = librosa.load(args.test_audio_path, sr=16000) |
|
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01) |
|
d_mfcc_feat = python_speech_features.base.delta(input_values, 1) |
|
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2) |
|
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2)) |
|
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4) |
|
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) |
|
|
|
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device) |
|
|
|
elif conf.infer_type.startswith('hubert'): |
|
|
|
if not os.path.exists(args.test_hubert_path): |
|
|
|
if not check_package_installed('transformers'): |
|
print('Please install transformers module first.') |
|
exit(0) |
|
hubert_model_path = 'ckpts/chinese-hubert-large' |
|
if not os.path.exists(hubert_model_path): |
|
print('Please download the hubert weight into the ckpts path first.') |
|
exit(0) |
|
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay') |
|
|
|
start_time = time.time() |
|
|
|
|
|
from transformers import Wav2Vec2FeatureExtractor, HubertModel |
|
audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device) |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path) |
|
audio_model.feature_extractor._freeze_parameters() |
|
audio_model.eval() |
|
|
|
|
|
audio, sr = librosa.load(args.test_audio_path, sr=16000) |
|
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values |
|
input_values = input_values.to(args.device) |
|
ws_feats = [] |
|
with torch.no_grad(): |
|
outputs = audio_model(input_values, output_hidden_states=True) |
|
for i in range(len(outputs.hidden_states)): |
|
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy()) |
|
ws_feat_obj = np.array(ws_feats) |
|
ws_feat_obj = np.squeeze(ws_feat_obj, 1) |
|
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') |
|
|
|
execution_time = time.time() - start_time |
|
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds") |
|
|
|
audio_driven_obj = ws_feat_obj |
|
else: |
|
print(f'Using audio feature from path: {args.test_hubert_path}') |
|
audio_driven_obj = np.load(args.test_hubert_path) |
|
|
|
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2) |
|
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) |
|
|
|
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device) |
|
|
|
|
|
|
|
noisyT = th.randn((1,frame_end, args.motion_dim)).to(args.device) |
|
|
|
|
|
if os.path.exists(args.pose_driven_path): |
|
pose_obj = np.load(args.pose_driven_path) |
|
|
|
|
|
if len(pose_obj.shape) != 2: |
|
print('please check your pose information. The shape must be like (T, 3).') |
|
exit(0) |
|
if pose_obj.shape[1] != 3: |
|
print('please check your pose information. The shape must be like (T, 3).') |
|
exit(0) |
|
|
|
if pose_obj.shape[0] >= frame_end: |
|
pose_obj = pose_obj[:frame_end,:] |
|
else: |
|
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1)) |
|
pose_obj = np.vstack((pose_obj, padding)) |
|
|
|
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 |
|
else: |
|
yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw |
|
pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch |
|
roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll |
|
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1) |
|
|
|
pose_signal = torch.clamp(pose_signal, -1, 1) |
|
|
|
face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location |
|
face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag) |
|
|
|
|
|
execution_time = time.time() - start_time |
|
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds") |
|
|
|
generated_directions = generated_directions.detach().cpu().numpy() |
|
|
|
start_time = time.time() |
|
|
|
for pred_index in tqdm(range(generated_directions.shape[1])): |
|
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats) |
|
ori_img_recon = ori_img_recon.clamp(-1, 1) |
|
wav_pred = (ori_img_recon.detach() + 1) / 2 |
|
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index))) |
|
|
|
|
|
execution_time = time.time() - start_time |
|
print(f"Renderer Model: {execution_time:.2f} Seconds") |
|
|
|
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path) |
|
|
|
shutil.rmtree(frames_result_saved_path) |
|
|
|
|
|
|
|
|
|
|
|
if args.face_sr and check_package_installed('gfpgan'): |
|
from face_sr.face_enhancer import enhancer_list |
|
import imageio |
|
|
|
|
|
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25)) |
|
|
|
|
|
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4') |
|
audio_clip = AudioFileClip(predicted_video_256_path) |
|
final_clip = video_clip.set_audio(audio_clip) |
|
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac') |
|
|
|
os.remove(predicted_video_512_path+'.tmp.mp4') |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--infer_type', type=str, default='mfcc_pose_only', help='mfcc_pose_only or mfcc_full_control') |
|
parser.add_argument('--test_image_path', type=str, default='./test_demos/portraits/monalisa.jpg', help='Path to the portrait') |
|
parser.add_argument('--test_audio_path', type=str, default='./test_demos/audios/english_female.wav', help='Path to the driven audio') |
|
parser.add_argument('--test_hubert_path', type=str, default='./test_demos/audios_hubert/english_female.npy', help='Path to the driven audio(hubert type). Not needed for MFCC') |
|
parser.add_argument('--result_path', type=str, default='./results/', help='Type of inference') |
|
parser.add_argument('--stage1_checkpoint_path', type=str, default='./ckpts/stage1.ckpt', help='Path to the checkpoint of Stage1') |
|
parser.add_argument('--stage2_checkpoint_path', type=str, default='./ckpts/pose_only.ckpt', help='Path to the checkpoint of Stage2') |
|
parser.add_argument('--seed', type=int, default=0, help='seed for generations') |
|
parser.add_argument('--control_flag', action='store_true', help='Whether to use control signal or not') |
|
parser.add_argument('--pose_yaw', type=float, default=0.25, help='range from -1 to 1 (-90 ~ 90 angles)') |
|
parser.add_argument('--pose_pitch', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)') |
|
parser.add_argument('--pose_roll', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)') |
|
parser.add_argument('--face_location', type=float, default=0.5, help='range from 0 to 1 (from left to right)') |
|
parser.add_argument('--pose_driven_path', type=str, default='xxx', help='path to pose numpy, shape is (T, 3). You can check the following code https://github.com/liutaocode/talking_face_preprocessing to extract the yaw, pitch and roll.') |
|
parser.add_argument('--face_scale', type=float, default=0.5, help='range from 0 to 1 (from small to large)') |
|
parser.add_argument('--step_T', type=int, default=50, help='Step T for diffusion denoising process') |
|
parser.add_argument('--image_size', type=int, default=256, help='Size of the image. Do not change.') |
|
parser.add_argument('--device', type=str, default='cuda:0', help='Device for computation') |
|
parser.add_argument('--motion_dim', type=int, default=20, help='Dimension of motion. Do not change.') |
|
parser.add_argument('--decoder_layers', type=int, default=2, help='Layer number for the conformer.') |
|
parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first') |
|
|
|
|
|
|
|
args = parser.parse_args() |
|
|
|
main(args) |