Spaces:
Build error
Build error
Khalil
commited on
Commit
•
35ed471
1
Parent(s):
b41a54a
Fix image generation function.
Browse files- app.py +16 -16
- text2punks/utils.py +3 -1
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
# system
|
2 |
|
3 |
import os
|
|
|
4 |
|
5 |
-
|
6 |
-
os.system("gdown https://drive.google.com/uc?id=
|
|
|
7 |
|
8 |
# plot
|
9 |
|
@@ -17,12 +19,7 @@ import gradio as gr
|
|
17 |
|
18 |
# text2punks utils
|
19 |
|
20 |
-
from text2punks.utils import to_pil_image, model_loader, generate_image
|
21 |
-
|
22 |
-
|
23 |
-
batch_size = 32
|
24 |
-
num_images = 32
|
25 |
-
top_prediction = 8
|
26 |
|
27 |
# nobs to tune
|
28 |
|
@@ -34,21 +31,24 @@ temperature = 1.25
|
|
34 |
def compose_predictions(images):
|
35 |
|
36 |
increased_h = 0
|
37 |
-
h, w = images
|
38 |
-
image_grid = Image.new("RGB", (
|
39 |
|
40 |
-
for i
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
return
|
44 |
|
45 |
|
46 |
-
def run_inference(prompt, num_images=32, num_preds=8):
|
47 |
|
48 |
t2p_path, clip_path = './Text2Punk-final-7.pt', './clip-final.pt'
|
49 |
text2punk, clip = model_loader(t2p_path, clip_path)
|
50 |
|
51 |
-
images = generate_image(prompt_text=prompt, top_k=top_k, temperature=temperature, num_images=num_images, batch_size=batch_size, top_prediction=
|
52 |
predictions = compose_predictions(images)
|
53 |
|
54 |
output_title = f"""
|
@@ -69,7 +69,7 @@ Text2Cryptopunks is an AI model that generates Cryptopunks images from text prom
|
|
69 |
|
70 |
gr.Interface(run_inference,
|
71 |
inputs=[gr.inputs.Textbox(label='type somthing like this : "An Ape CryptoPunk that has 2 Attributes, a Pigtails and a Medical Mask."')],
|
72 |
-
outputs=outputs,
|
73 |
title='Text2Cryptopunks',
|
74 |
description=description,
|
75 |
article="<p style='text-align: center'> Created by kTonpa | <a href='https://github.com/kTonpa/Text2CryptoPunks'>GitHub</a>",
|
|
|
1 |
# system
|
2 |
|
3 |
import os
|
4 |
+
from pathlib import Path
|
5 |
|
6 |
+
if not Path('./Text2Punk-final-7.pt').exists() and not Path('./clip-final.pt').exists():
|
7 |
+
os.system("gdown https://drive.google.com/uc?id=1--27E5dk8GzgvpVL0ofr-m631iymBpUH")
|
8 |
+
os.system("gdown https://drive.google.com/uc?id=191a5lTsUPQ1hXaeo6kVNbo_W3WYuXsmF")
|
9 |
|
10 |
# plot
|
11 |
|
|
|
19 |
|
20 |
# text2punks utils
|
21 |
|
22 |
+
from text2punks.utils import resize, to_pil_image, model_loader, generate_image
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# nobs to tune
|
25 |
|
|
|
31 |
def compose_predictions(images):
|
32 |
|
33 |
increased_h = 0
|
34 |
+
b, c, h, w = *images.shape,
|
35 |
+
image_grid = Image.new("RGB", (b*w*4, h*4), color=0)
|
36 |
|
37 |
+
for i in range(b):
|
38 |
+
# resize(images[i], 96)
|
39 |
+
print(images[i].shape)
|
40 |
+
img_ = to_pil_image(images[i])
|
41 |
+
image_grid.paste(img_, (i*w*4, increased_h))
|
42 |
|
43 |
+
return image_grid
|
44 |
|
45 |
|
46 |
+
def run_inference(prompt, num_images=32, batch_size=32, num_preds=8):
|
47 |
|
48 |
t2p_path, clip_path = './Text2Punk-final-7.pt', './clip-final.pt'
|
49 |
text2punk, clip = model_loader(t2p_path, clip_path)
|
50 |
|
51 |
+
images, _ = generate_image(prompt_text=prompt, top_k=top_k, temperature=temperature, num_images=num_images, batch_size=batch_size, top_prediction=num_preds, text2punk_model=text2punk, clip_model=clip)
|
52 |
predictions = compose_predictions(images)
|
53 |
|
54 |
output_title = f"""
|
|
|
69 |
|
70 |
gr.Interface(run_inference,
|
71 |
inputs=[gr.inputs.Textbox(label='type somthing like this : "An Ape CryptoPunk that has 2 Attributes, a Pigtails and a Medical Mask."')],
|
72 |
+
outputs=outputs,
|
73 |
title='Text2Cryptopunks',
|
74 |
description=description,
|
75 |
article="<p style='text-align: center'> Created by kTonpa | <a href='https://github.com/kTonpa/Text2CryptoPunks'>GitHub</a>",
|
text2punks/utils.py
CHANGED
@@ -26,9 +26,11 @@ codebook = torch.load('./text2punks/data/codebook.pt')
|
|
26 |
def exists(val):
|
27 |
return val is not None
|
28 |
|
|
|
|
|
29 |
|
30 |
def to_pil_image(image_tensor):
|
31 |
-
return F.to_pil_image(image_tensor)
|
32 |
|
33 |
|
34 |
def model_loader(text2punk_path, clip_path):
|
|
|
26 |
def exists(val):
|
27 |
return val is not None
|
28 |
|
29 |
+
def resize(image_tensor, size):
|
30 |
+
return F.resize(image_tensor, (size, size), F.InterpolationMode.NEAREST)
|
31 |
|
32 |
def to_pil_image(image_tensor):
|
33 |
+
return F.to_pil_image(image_tensor.type(torch.uint8))
|
34 |
|
35 |
|
36 |
def model_loader(text2punk_path, clip_path):
|