|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
from collections import defaultdict |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import Tuple, Type |
|
|
|
from lhotse import CutSet |
|
from lhotse.dataset.collation import collate_features |
|
from lhotse.dataset.input_strategies import ( |
|
ExecutorType, |
|
PrecomputedFeatures, |
|
_get_executor, |
|
) |
|
from lhotse.utils import fastcopy |
|
|
|
|
|
class PromptedFeatures: |
|
def __init__(self, prompts, features): |
|
self.prompts = prompts |
|
self.features = features |
|
|
|
def to(self, device): |
|
return PromptedFeatures(self.prompts.to(device), self.features.to(device)) |
|
|
|
def sum(self): |
|
return self.features.sum() |
|
|
|
@property |
|
def ndim(self): |
|
return self.features.ndim |
|
|
|
@property |
|
def data(self): |
|
return (self.prompts, self.features) |
|
|
|
|
|
class PromptedPrecomputedFeatures(PrecomputedFeatures): |
|
def __init__( |
|
self, |
|
dataset: str, |
|
cuts: CutSet, |
|
num_workers: int = 0, |
|
executor_type: Type[ExecutorType] = ThreadPoolExecutor, |
|
) -> None: |
|
super().__init__(num_workers, executor_type) |
|
self.utt2neighbors = self._create_utt2neighbors(dataset, cuts) |
|
|
|
def __call__(self, cuts: CutSet) -> Tuple[PromptedFeatures, PromptedFeatures]: |
|
features, features_lens = self._collate_features(cuts) |
|
prompts, prompts_lens = self._collate_prompts(cuts) |
|
return PromptedFeatures(prompts, features), PromptedFeatures( |
|
prompts_lens, features_lens |
|
) |
|
|
|
def _create_utt2neighbors(self, dataset, cuts): |
|
utt2neighbors = defaultdict(lambda: []) |
|
utt2cut = {cut.id: cut for cut in cuts} |
|
if dataset.lower() == "libritts": |
|
self._process_libritts_dataset(utt2neighbors, utt2cut, cuts) |
|
elif dataset.lower() == "ljspeech": |
|
self._process_ljspeech_dataset(utt2neighbors, utt2cut, cuts) |
|
else: |
|
raise ValueError("Unsupported dataset") |
|
return utt2neighbors |
|
|
|
def _process_libritts_dataset(self, utt2neighbors, utt2cut, cuts): |
|
speaker2utts = defaultdict(lambda: []) |
|
for cut in cuts: |
|
speaker = cut.supervisions[0].speaker |
|
speaker2utts[speaker].append(cut.id) |
|
|
|
for spk, uttids in speaker2utts.items(): |
|
sorted_uttids = sorted(uttids) |
|
if len(sorted_uttids) == 1: |
|
utt2neighbors[sorted_uttids[0]].append(utt2cut[sorted_uttids[0]]) |
|
continue |
|
|
|
utt2prevutt = dict( |
|
zip(sorted_uttids, [sorted_uttids[1]] + sorted_uttids[:-1]) |
|
) |
|
utt2postutt = dict(zip(sorted_uttids[:-1], sorted_uttids[1:])) |
|
for utt in sorted_uttids: |
|
if utt in utt2prevutt: |
|
utt2neighbors[utt].append(utt2cut[utt2prevutt[utt]]) |
|
if utt in utt2postutt: |
|
utt2neighbors[utt].append(utt2cut[utt2postutt[utt]]) |
|
|
|
def _process_ljspeech_dataset(self, utt2neighbors, utt2cut, cuts): |
|
uttids = [cut.id for cut in cuts] |
|
if len(uttids) == 1: |
|
utt2neighbors[uttids[0]].append(utt2cut[uttids[0]]) |
|
return |
|
|
|
utt2prevutt = dict(zip(uttids, [uttids[1]] + uttids[:-1])) |
|
utt2postutt = dict(zip(uttids[:-1], uttids[1:])) |
|
for utt in uttids: |
|
prevutt, postutt = utt2prevutt.get(utt), utt2postutt.get(utt) |
|
if prevutt and utt[:5] == prevutt[:5]: |
|
utt2neighbors[utt].append(utt2cut[prevutt]) |
|
if postutt and utt[:5] == postutt[:5]: |
|
utt2neighbors[utt].append(utt2cut[postutt]) |
|
|
|
def _collate_features(self, cuts): |
|
return collate_features( |
|
cuts, |
|
executor=_get_executor(self.num_workers, executor_type=self._executor_type), |
|
) |
|
|
|
def _collate_prompts(self, cuts): |
|
prompts_cuts = [] |
|
for k, cut in enumerate(cuts): |
|
prompts_cut = random.choice(self.utt2neighbors[cut.id]) |
|
prompts_cuts.append(fastcopy(prompts_cut, id=f"{cut.id}-{str(k)}")) |
|
|
|
mini_duration = min([cut.duration for cut in prompts_cuts] + [3.0]) |
|
prompts_cuts = CutSet( |
|
cuts={k: cut for k, cut in enumerate(prompts_cuts)} |
|
).truncate(max_duration=mini_duration, offset_type="random", preserve_id=False) |
|
|
|
return collate_features( |
|
prompts_cuts, |
|
executor=_get_executor(self.num_workers, executor_type=self._executor_type), |
|
) |
|
|