|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
|
|
def gaussian_normalize_mel_channel(mel, mu, sigma): |
|
""" |
|
Shift to Standorm Normal Distribution |
|
|
|
Args: |
|
mel: (n_mels, frame_len) |
|
mu: (n_mels,), mean value |
|
sigma: (n_mels,), sd value |
|
Return: |
|
Tensor like mel |
|
""" |
|
mu = np.expand_dims(mu, -1) |
|
sigma = np.expand_dims(sigma, -1) |
|
return (mel - mu) / sigma |
|
|
|
|
|
def de_gaussian_normalize_mel_channel(mel, mu, sigma): |
|
""" |
|
|
|
Args: |
|
mel: (n_mels, frame_len) |
|
mu: (n_mels,), mean value |
|
sigma: (n_mels,), sd value |
|
Return: |
|
Tensor like mel |
|
""" |
|
mu = np.expand_dims(mu, -1) |
|
sigma = np.expand_dims(sigma, -1) |
|
return sigma * mel + mu |
|
|
|
|
|
def decompress(audio_compressed, bits): |
|
mu = 2**bits - 1 |
|
audio = np.sign(audio_compressed) / mu * ((1 + mu) ** np.abs(audio_compressed) - 1) |
|
return audio |
|
|
|
|
|
def compress(audio, bits): |
|
mu = 2**bits - 1 |
|
audio_compressed = np.sign(audio) * np.log(1 + mu * np.abs(audio)) / np.log(mu + 1) |
|
return audio_compressed |
|
|
|
|
|
def label_to_audio(quant, bits): |
|
classes = 2**bits |
|
audio = 2 * quant / (classes - 1.0) - 1.0 |
|
return audio |
|
|
|
|
|
def audio_to_label(audio, bits): |
|
"""Normalized audio data tensor to digit array |
|
|
|
Args: |
|
audio (tensor): audio data |
|
bits (int): data bits |
|
|
|
Returns: |
|
array<int>: digit array of audio data |
|
""" |
|
classes = 2**bits |
|
|
|
bins = np.linspace(-1, 1, classes) |
|
|
|
quant = np.digitize(audio, bins) - 1 |
|
return quant |
|
|
|
|
|
def label_to_onehot(x, bits): |
|
"""Converts a class vector (integers) to binary class matrix. |
|
Args: |
|
x: class vector to be converted into a matrix |
|
(integers from 0 to num_classes). |
|
num_classes: total number of classes. |
|
Returns: |
|
A binary matrix representation of the input. The classes axis |
|
is placed last. |
|
""" |
|
classes = 2**bits |
|
|
|
result = torch.zeros((x.shape[0], classes), dtype=torch.float32) |
|
for i in range(x.shape[0]): |
|
result[i, x[i]] = 1 |
|
|
|
output_shape = x.shape + (classes,) |
|
output = torch.reshape(result, output_shape) |
|
return output |
|
|