|
|
|
|
|
|
|
|
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
import parselmouth |
|
import torchcrepe |
|
import pyworld as pw |
|
|
|
|
|
def f0_to_coarse(f0, pitch_bin, f0_min, f0_max): |
|
""" |
|
Convert f0 (Hz) to pitch (mel scale), and then quantize the mel-scale pitch to the |
|
range from [1, 2, 3, ..., pitch_bin-1] |
|
|
|
Reference: https://en.wikipedia.org/wiki/Mel_scale |
|
|
|
Args: |
|
f0 (array or Tensor): Hz |
|
pitch_bin (int): the vocabulary size |
|
f0_min (int): the minimum f0 (Hz) |
|
f0_max (int): the maximum f0 (Hz) |
|
|
|
Returns: |
|
quantized f0 (array or Tensor) |
|
""" |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
is_torch = isinstance(f0, torch.Tensor) |
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (pitch_bin - 2) / ( |
|
f0_mel_max - f0_mel_min |
|
) + 1 |
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > pitch_bin - 1] = pitch_bin - 1 |
|
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int32) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( |
|
f0_coarse.max(), |
|
f0_coarse.min(), |
|
) |
|
return f0_coarse |
|
|
|
|
|
def interpolate(f0): |
|
"""Interpolate the unvoiced part. Thus the f0 can be passed to a subtractive synthesizer. |
|
Args: |
|
f0: A numpy array of shape (seq_len,) |
|
Returns: |
|
f0: Interpolated f0 of shape (seq_len,) |
|
uv: Unvoiced part of shape (seq_len,) |
|
""" |
|
uv = f0 == 0 |
|
if len(f0[~uv]) > 0: |
|
|
|
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) |
|
uv = uv.astype("float") |
|
uv = np.min(np.array([uv[:-2], uv[1:-1], uv[2:]]), axis=0) |
|
uv = np.pad(uv, (1, 1)) |
|
return f0, uv |
|
|
|
|
|
def get_log_f0(f0): |
|
f0[np.where(f0 == 0)] = 1 |
|
log_f0 = np.log(f0) |
|
return log_f0 |
|
|
|
|
|
def get_f0_features_using_pyin(audio, cfg): |
|
"""Using pyin to extract the f0 feature. |
|
Args: |
|
audio |
|
fs |
|
win_length |
|
hop_length |
|
f0_min |
|
f0_max |
|
Returns: |
|
f0: numpy array of shape (frame_len,) |
|
""" |
|
f0, voiced_flag, voiced_probs = librosa.pyin( |
|
y=audio, |
|
fmin=cfg.f0_min, |
|
fmax=cfg.f0_max, |
|
sr=cfg.sample_rate, |
|
win_length=cfg.win_size, |
|
hop_length=cfg.hop_size, |
|
) |
|
|
|
f0[voiced_flag == False] = 0 |
|
return f0 |
|
|
|
|
|
def get_f0_features_using_parselmouth(audio, cfg, speed=1): |
|
"""Using parselmouth to extract the f0 feature. |
|
Args: |
|
audio |
|
mel_len |
|
hop_length |
|
fs |
|
f0_min |
|
f0_max |
|
speed(default=1) |
|
Returns: |
|
f0: numpy array of shape (frame_len,) |
|
pitch_coarse: numpy array of shape (frame_len,) |
|
""" |
|
hop_size = int(np.round(cfg.hop_size * speed)) |
|
|
|
|
|
time_step = hop_size / cfg.sample_rate * 1000 |
|
|
|
f0 = ( |
|
parselmouth.Sound(audio, cfg.sample_rate) |
|
.to_pitch_ac( |
|
time_step=time_step / 1000, |
|
voicing_threshold=0.6, |
|
pitch_floor=cfg.f0_min, |
|
pitch_ceiling=cfg.f0_max, |
|
) |
|
.selected_array["frequency"] |
|
) |
|
return f0 |
|
|
|
|
|
def get_f0_features_using_dio(audio, cfg): |
|
"""Using dio to extract the f0 feature. |
|
Args: |
|
audio |
|
mel_len |
|
fs |
|
hop_length |
|
f0_min |
|
f0_max |
|
Returns: |
|
f0: numpy array of shape (frame_len,) |
|
""" |
|
|
|
_f0, t = pw.dio( |
|
audio.astype("double"), |
|
cfg.sample_rate, |
|
f0_floor=cfg.f0_min, |
|
f0_ceil=cfg.f0_max, |
|
channels_in_octave=2, |
|
frame_period=(1000 * cfg.hop_size / cfg.sample_rate), |
|
) |
|
|
|
f0 = pw.stonemask(audio.astype("double"), _f0, t, cfg.sample_rate) |
|
return f0 |
|
|
|
|
|
def get_f0_features_using_harvest(audio, mel_len, fs, hop_length, f0_min, f0_max): |
|
"""Using harvest to extract the f0 feature. |
|
Args: |
|
audio |
|
mel_len |
|
fs |
|
hop_length |
|
f0_min |
|
f0_max |
|
Returns: |
|
f0: numpy array of shape (frame_len,) |
|
""" |
|
f0, _ = pw.harvest( |
|
audio.astype("double"), |
|
fs, |
|
f0_floor=f0_min, |
|
f0_ceil=f0_max, |
|
frame_period=(1000 * hop_length / fs), |
|
) |
|
f0 = f0.astype("float")[:mel_len] |
|
return f0 |
|
|
|
|
|
def get_f0_features_using_crepe( |
|
audio, mel_len, fs, hop_length, hop_length_new, f0_min, f0_max, threshold=0.3 |
|
): |
|
"""Using torchcrepe to extract the f0 feature. |
|
Args: |
|
audio |
|
mel_len |
|
fs |
|
hop_length |
|
hop_length_new |
|
f0_min |
|
f0_max |
|
threshold(default=0.3) |
|
Returns: |
|
f0: numpy array of shape (frame_len,) |
|
""" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
audio_16k = librosa.resample(audio, orig_sr=fs, target_sr=16000) |
|
audio_16k_torch = torch.FloatTensor(audio_16k).unsqueeze(0).to(device) |
|
|
|
|
|
f0, pd = torchcrepe.predict( |
|
audio_16k_torch, |
|
16000, |
|
hop_length_new, |
|
f0_min, |
|
f0_max, |
|
pad=True, |
|
model="full", |
|
batch_size=1024, |
|
device=device, |
|
return_periodicity=True, |
|
) |
|
|
|
|
|
pd = torchcrepe.filter.median(pd, 3) |
|
pd = torchcrepe.threshold.Silence(-60.0)(pd, audio_16k_torch, 16000, hop_length_new) |
|
f0 = torchcrepe.threshold.At(threshold)(f0, pd) |
|
f0 = torchcrepe.filter.mean(f0, 3) |
|
|
|
|
|
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0) |
|
|
|
|
|
nzindex = torch.nonzero(f0[0]).squeeze() |
|
f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy() |
|
time_org = 0.005 * nzindex.cpu().numpy() |
|
time_frame = np.arange(mel_len) * hop_length / fs |
|
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) |
|
return f0 |
|
|
|
|
|
def get_f0(audio, cfg, use_interpolate=False, return_uv=False): |
|
if cfg.pitch_extractor == "dio": |
|
f0 = get_f0_features_using_dio(audio, cfg) |
|
elif cfg.pitch_extractor == "pyin": |
|
f0 = get_f0_features_using_pyin(audio, cfg) |
|
elif cfg.pitch_extractor == "parselmouth": |
|
f0 = get_f0_features_using_parselmouth(audio, cfg) |
|
|
|
if use_interpolate: |
|
f0, uv = interpolate(f0) |
|
else: |
|
uv = f0 == 0 |
|
|
|
if return_uv: |
|
return f0, uv |
|
|
|
return f0 |
|
|
|
|
|
def get_cents(f0_hz): |
|
""" |
|
F_{cent} = 1200 * log2 (F/440) |
|
|
|
Reference: |
|
APSIPA'17, Perceptual Evaluation of Singing Quality |
|
""" |
|
voiced_f0 = f0_hz[f0_hz != 0] |
|
return 1200 * np.log2(voiced_f0 / 440) |
|
|
|
|
|
def get_pitch_derivatives(f0_hz): |
|
""" |
|
f0_hz: (,T) |
|
""" |
|
f0_cent = get_cents(f0_hz) |
|
return f0_cent[1:] - f0_cent[:-1] |
|
|
|
|
|
def get_pitch_sub_median(f0_hz): |
|
""" |
|
f0_hz: (,T) |
|
""" |
|
f0_cent = get_cents(f0_hz) |
|
return f0_cent - np.median(f0_cent) |
|
|