Spaces:
Runtime error
Runtime error
import os | |
import re | |
from copy import deepcopy | |
from pathlib import Path | |
import evo.main_ape as main_ape | |
import evo.main_rpe as main_rpe | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from evo.core import sync | |
from evo.core.metrics import PoseRelation, Unit | |
from evo.core.trajectory import PosePath3D, PoseTrajectory3D | |
from evo.tools import file_interface, plot | |
from scipy.spatial.transform import Rotation | |
from evo.core import metrics | |
def sintel_cam_read(filename): | |
"""Read camera data, return (M,N) tuple. | |
M is the intrinsic matrix, N is the extrinsic matrix, so that | |
x = M*N*X, | |
with x being a point in homogeneous image pixel coordinates, X being a | |
point in homogeneous world coordinates. | |
""" | |
TAG_FLOAT = 202021.25 | |
f = open(filename, "rb") | |
check = np.fromfile(f, dtype=np.float32, count=1)[0] | |
assert ( | |
check == TAG_FLOAT | |
), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( | |
TAG_FLOAT, check | |
) | |
M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3)) | |
N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4)) | |
return M, N | |
def load_replica_traj(gt_file): | |
traj_w_c = np.loadtxt(gt_file) | |
assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16 | |
poses = [ | |
np.array( | |
[ | |
[r[0], r[1], r[2], r[3]], | |
[r[4], r[5], r[6], r[7]], | |
[r[8], r[9], r[10], r[11]], | |
[0, 0, 0, 1], | |
] | |
) | |
for r in traj_w_c | |
] | |
pose_path = PosePath3D(poses_se3=poses) | |
timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float) | |
traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat) | |
xyz = traj.positions_xyz | |
# shift -1 column -> w in back column | |
# quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1) | |
# uncomment this line if the quaternion is in scalar-first format | |
quat = traj.orientations_quat_wxyz | |
traj_tum = np.column_stack((xyz, quat)) | |
return (traj_tum, timestamps_mat) | |
def load_sintel_traj(gt_file): # './data/sintel/training/camdata_left/alley_2' | |
# Refer to ParticleSfM | |
gt_pose_lists = sorted(os.listdir(gt_file)) | |
gt_pose_lists = [ | |
os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam") | |
] | |
tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists] | |
gt_poses = [ | |
sintel_cam_read(f)[1] for f in gt_pose_lists | |
] # [1] means get the extrinsic | |
xyzs, wxyzs = [], [] | |
tum_gt_poses = [] | |
for gt_pose in gt_poses: | |
gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0) | |
gt_pose_inv = np.linalg.inv(gt_pose) # world2cam -> cam2world | |
xyz = gt_pose_inv[:3, -1] | |
xyzs.append(xyz) | |
R = Rotation.from_matrix(gt_pose_inv[:3, :3]) | |
xyzw = R.as_quat() # scalar-last for scipy | |
wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]]) | |
wxyzs.append(wxyz) | |
tum_gt_pose = np.concatenate([xyz, wxyz], 0) # TODO: check if this is correct | |
tum_gt_poses.append(tum_gt_pose) | |
tum_gt_poses = np.stack(tum_gt_poses, 0) | |
tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean( | |
tum_gt_poses[:, :3], 0, keepdims=True | |
) | |
tt = np.expand_dims(np.stack(tstamps, 0), -1) | |
return tum_gt_poses, tt | |
def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None): | |
"""Read trajectory format. Return in TUM-RGBD format. | |
Returns: | |
traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw) | |
timestamps_mat (N, 1): timestamps | |
""" | |
if traj_format == "replica": | |
traj_tum, timestamps_mat = load_replica_traj(gt_traj_file) | |
elif traj_format == "sintel": | |
traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file) | |
elif traj_format in ["tum", "tartanair"]: | |
traj = file_interface.read_tum_trajectory_file(gt_traj_file) | |
xyz = traj.positions_xyz | |
quat = traj.orientations_quat_wxyz | |
timestamps_mat = traj.timestamps | |
traj_tum = np.column_stack((xyz, quat)) | |
else: | |
raise NotImplementedError | |
traj_tum = traj_tum[skip::stride] | |
timestamps_mat = timestamps_mat[skip::stride] | |
if num_frames is not None: | |
traj_tum = traj_tum[:num_frames] | |
timestamps_mat = timestamps_mat[:num_frames] | |
return traj_tum, timestamps_mat | |
def update_timestamps(gt_file, traj_format, skip=0, stride=1): | |
"""Update timestamps given a""" | |
if traj_format == "tum": | |
traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt") | |
timestamps = load_timestamps(traj_t_map_file, traj_format) | |
return timestamps[skip::stride] | |
elif traj_format == "tartanair": | |
traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt") | |
timestamps = load_timestamps(traj_t_map_file, traj_format) | |
return timestamps[skip::stride] | |
def load_timestamps(time_file, traj_format="replica"): | |
if traj_format in ["tum", "tartanair"]: | |
with open(time_file, "r+") as f: | |
lines = f.readlines() | |
timestamps_mat = [ | |
float(x.split(" ")[0]) for x in lines if not x.startswith("#") | |
] | |
return timestamps_mat | |
def make_traj(args) -> PoseTrajectory3D: | |
if isinstance(args, tuple) or isinstance(args, list): | |
traj, tstamps = args | |
return PoseTrajectory3D( | |
positions_xyz=traj[:, :3], | |
orientations_quat_wxyz=traj[:, 3:], | |
timestamps=tstamps, | |
) | |
assert isinstance(args, PoseTrajectory3D), type(args) | |
return deepcopy(args) | |
def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1): | |
if sample_stride > 1: | |
pred_traj[0] = pred_traj[0][::sample_stride] | |
pred_traj[1] = pred_traj[1][::sample_stride] | |
if gt_traj is not None: | |
updated_gt_traj = [] | |
updated_gt_traj.append(gt_traj[0][::sample_stride]) | |
updated_gt_traj.append(gt_traj[1][::sample_stride]) | |
gt_traj = updated_gt_traj | |
pred_traj = make_traj(pred_traj) | |
if gt_traj is not None: | |
gt_traj = make_traj(gt_traj) | |
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: | |
pred_traj.timestamps = gt_traj.timestamps | |
else: | |
print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) | |
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) | |
# ATE | |
traj_ref = gt_traj | |
traj_est = pred_traj | |
ate_result = main_ape.ape( | |
traj_ref, | |
traj_est, | |
est_name="traj", | |
pose_relation=PoseRelation.translation_part, | |
align=True, | |
correct_scale=True, | |
) | |
ate = ate_result.stats["rmse"] | |
# print(ate_result.np_arrays['error_array']) | |
# exit() | |
# RPE rotation and translation | |
delta_list = [1] | |
rpe_rots, rpe_transs = [], [] | |
for delta in delta_list: | |
rpe_rots_result = main_rpe.rpe( | |
traj_ref, | |
traj_est, | |
est_name="traj", | |
pose_relation=PoseRelation.rotation_angle_deg, | |
align=True, | |
correct_scale=True, | |
delta=delta, | |
delta_unit=Unit.frames, | |
rel_delta_tol=0.01, | |
all_pairs=True, | |
) | |
rot = rpe_rots_result.stats["rmse"] | |
rpe_rots.append(rot) | |
for delta in delta_list: | |
rpe_transs_result = main_rpe.rpe( | |
traj_ref, | |
traj_est, | |
est_name="traj", | |
pose_relation=PoseRelation.translation_part, | |
align=True, | |
correct_scale=True, | |
delta=delta, | |
delta_unit=Unit.frames, | |
rel_delta_tol=0.01, | |
all_pairs=True, | |
) | |
trans = rpe_transs_result.stats["rmse"] | |
rpe_transs.append(trans) | |
rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots) | |
with open(filename, "w+") as f: | |
f.write(f"Seq: {seq} \n\n") | |
f.write(f"{ate_result}") | |
f.write(f"{rpe_rots_result}") | |
f.write(f"{rpe_transs_result}") | |
print(f"Save results to {filename}") | |
return ate, rpe_trans, rpe_rot | |
def eval_metrics_first_pose_align_last_pose( | |
pred_traj, gt_traj=None, seq="", filename="", figpath="", sample_stride=1 | |
): | |
if sample_stride > 1: | |
pred_traj[0] = pred_traj[0][::sample_stride] | |
pred_traj[1] = pred_traj[1][::sample_stride] | |
if gt_traj is not None: | |
gt_traj = [gt_traj[0][::sample_stride], gt_traj[1][::sample_stride]] | |
pred_traj = make_traj(pred_traj) | |
if gt_traj is not None: | |
gt_traj = make_traj(gt_traj) | |
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: | |
pred_traj.timestamps = gt_traj.timestamps | |
else: | |
print( | |
"Different number of poses:", | |
pred_traj.timestamps.shape[0], | |
gt_traj.timestamps.shape[0], | |
) | |
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) | |
if gt_traj is not None and pred_traj is not None: | |
if len(gt_traj.poses_se3) > 0 and len(pred_traj.poses_se3) > 0: | |
first_gt_pose = gt_traj.poses_se3[0] | |
first_pred_pose = pred_traj.poses_se3[0] | |
# T = (first_gt_pose) * inv(first_pred_pose) | |
T = first_gt_pose @ np.linalg.inv(first_pred_pose) | |
# Apply T to every predicted pose | |
aligned_pred_poses = [] | |
for pose in pred_traj.poses_se3: | |
aligned_pred_poses.append(T @ pose) | |
aligned_pred_traj = PoseTrajectory3D( | |
poses_se3=aligned_pred_poses, | |
timestamps=np.array(pred_traj.timestamps), | |
# optionally copy other fields if your make_traj object has them | |
) | |
pred_traj = aligned_pred_traj # .poses_se3 = aligned_pred_poses | |
plot_trajectory( | |
pred_traj, | |
gt_traj, | |
title=seq, | |
filename=figpath, | |
align=False, | |
correct_scale=False, | |
) | |
if gt_traj is not None and len(gt_traj.poses_se3) > 0: | |
gt_traj = PoseTrajectory3D( | |
poses_se3=[gt_traj.poses_se3[-1]], timestamps=[gt_traj.timestamps[-1]] | |
) | |
if pred_traj is not None and len(pred_traj.poses_se3) > 0: | |
pred_traj = PoseTrajectory3D( | |
poses_se3=[pred_traj.poses_se3[-1]], timestamps=[pred_traj.timestamps[-1]] | |
) | |
ate_result = main_ape.ape( | |
gt_traj, | |
pred_traj, | |
est_name="traj", | |
pose_relation=PoseRelation.translation_part, | |
align=False, # <-- important | |
correct_scale=False, # <-- important | |
) | |
ate = ate_result.stats["rmse"] | |
with open(filename, "w+") as f: | |
f.write(f"Seq: {seq}\n\n") | |
f.write(f"{ate_result}") | |
print(f"Save results to {filename}") | |
return ate | |
def best_plotmode(traj): | |
_, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0)) | |
plot_axes = "xyz"[i2] + "xyz"[i1] | |
return getattr(plot.PlotMode, plot_axes) | |
def plot_trajectory( | |
pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True | |
): | |
pred_traj = make_traj(pred_traj) | |
if gt_traj is not None: | |
gt_traj = make_traj(gt_traj) | |
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]: | |
pred_traj.timestamps = gt_traj.timestamps | |
else: | |
print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0]) | |
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj) | |
if align: | |
pred_traj.align(gt_traj, correct_scale=correct_scale) | |
plot_collection = plot.PlotCollection("PlotCol") | |
fig = plt.figure(figsize=(8, 8)) | |
plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj) | |
ax = plot.prepare_axis(fig, plot_mode) | |
ax.set_title(title) | |
if gt_traj is not None: | |
plot.traj(ax, plot_mode, gt_traj, "--", "gray", "Ground Truth") | |
plot.traj(ax, plot_mode, pred_traj, "-", "blue", "Predicted") | |
plot_collection.add_figure("traj_error", fig) | |
plot_collection.export(filename, confirm_overwrite=False) | |
plt.close(fig=fig) | |
print(f"Saved trajectory to {filename.replace('.png','')}_traj_error.png") | |
def save_trajectory_tum_format(traj, filename): | |
traj = make_traj(traj) | |
tostr = lambda a: " ".join(map(str, a)) | |
with Path(filename).open("w") as f: | |
for i in range(traj.num_poses): | |
f.write( | |
f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n" | |
) | |
print(f"Saved trajectory to {filename}") | |
def extract_metrics(file_path): | |
with open(file_path, "r") as file: | |
content = file.read() | |
# Extract metrics using regex | |
ate_match = re.search( | |
r"APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL | |
) | |
rpe_trans_match = re.search( | |
r"RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL | |
) | |
rpe_rot_match = re.search( | |
r"RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)", | |
content, | |
re.DOTALL, | |
) | |
ate = float(ate_match.group(1)) if ate_match else 0.0 | |
rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0 | |
rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0 | |
return ate, rpe_trans, rpe_rot | |
def process_directory(directory): | |
results = [] | |
for root, _, files in os.walk(directory): | |
if files is not None: | |
files = sorted(files) | |
for file in files: | |
if file.endswith("_metric.txt"): | |
file_path = os.path.join(root, file) | |
seq_name = file.replace("_eval_metric.txt", "") | |
ate, rpe_trans, rpe_rot = extract_metrics(file_path) | |
results.append((seq_name, ate, rpe_trans, rpe_rot)) | |
return results | |
def calculate_averages(results): | |
total_ate = sum(r[1] for r in results) | |
total_rpe_trans = sum(r[2] for r in results) | |
total_rpe_rot = sum(r[3] for r in results) | |
count = len(results) | |
if count == 0: | |
return 0.0, 0.0, 0.0 | |
avg_ate = total_ate / count | |
avg_rpe_trans = total_rpe_trans / count | |
avg_rpe_rot = total_rpe_rot / count | |
return avg_ate, avg_rpe_trans, avg_rpe_rot | |