lightmate commited on
Commit
f0d2584
·
verified ·
1 Parent(s): 6ecb4e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -73
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import os
2
  from pathlib import Path
3
  import torch
4
- from threading import Event, Thread
5
  from transformers import AutoConfig, AutoTokenizer
6
  from optimum.intel.openvino import OVModelForCausalLM
7
  import openvino as ov
@@ -15,6 +14,66 @@ from llm_config import SUPPORTED_LLM_MODELS
15
  # Initialize model language options
16
  model_languages = list(SUPPORTED_LLM_MODELS)
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  # Define Gradio interface within a Blocks context
19
  with gr.Blocks() as iface:
20
  # Dropdown for model language selection
@@ -31,12 +90,11 @@ with gr.Blocks() as iface:
31
  value=None
32
  )
33
 
34
- # Function to update model_id dropdown choices based on model_language
35
  def update_model_id(model_language_value):
36
  model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
37
  return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
38
 
39
- # Update model_id choices when model_language changes
40
  model_language.change(update_model_id, inputs=model_language, outputs=model_id)
41
 
42
  # Checkbox for INT4 model preparation
@@ -59,42 +117,7 @@ with gr.Blocks() as iface:
59
  label="Device"
60
  )
61
 
62
- # Function to retrieve model configuration and path
63
- def get_model_path(model_language_value, model_id_value):
64
- model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
65
- pt_model_name = model_id_value.split("-")[0]
66
- int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
67
- return model_configuration, int4_model_dir, pt_model_name
68
-
69
- # Function to download the model if not already present
70
- def download_model_if_needed(model_language_value, model_id_value):
71
- model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
72
- int4_weights = int4_model_dir / "openvino_model.bin"
73
- if not int4_weights.exists():
74
- print(f"Downloading model {model_id_value}...")
75
- # Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
76
- return int4_model_dir
77
-
78
- # Load the model based on selected options
79
- def load_model(model_language_value, model_id_value):
80
- int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
81
- ov_config = {
82
- hints.performance_mode(): hints.PerformanceMode.LATENCY,
83
- streams.num(): "1",
84
- props.cache_dir(): ""
85
- }
86
- core = ov.Core()
87
- tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
88
- ov_model = OVModelForCausalLM.from_pretrained(
89
- int4_model_dir,
90
- device=device.value,
91
- ov_config=ov_config,
92
- config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
93
- trust_remote_code=True
94
- )
95
- return tok, ov_model
96
-
97
- # Gradio sliders for model generation parameters
98
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
99
  top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
100
  top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
@@ -103,41 +126,19 @@ with gr.Blocks() as iface:
103
  # Conversation history state
104
  history = gr.State([])
105
 
106
- # Function to generate responses based on model and input
107
- def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
108
- tok, ov_model = load_model(model_language_value, model_id_value)
109
-
110
- def convert_history_to_token(history):
111
- input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
112
- return input_tokens
113
-
114
- input_ids = convert_history_to_token(history)
115
-
116
- generate_kwargs = dict(
117
- input_ids=input_ids,
118
- max_new_tokens=256,
119
- temperature=temperature,
120
- top_p=top_p,
121
- top_k=top_k,
122
- repetition_penalty=repetition_penalty
123
- )
124
-
125
- # Stream response to textbox
126
- response = ""
127
- for new_text in ov_model.generate(**generate_kwargs):
128
- response += new_text
129
- history[-1][1] = response
130
- yield history
131
-
132
- # Set up the interface with inputs and outputs
133
- iface = gr.Interface(
134
- fn=generate_response,
135
- inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id],
136
- outputs=[gr.Textbox(label="Conversation History"), history],
137
- live=True,
138
- title="OpenVINO Chatbot"
139
  )
140
 
141
  # Launch the Gradio app
142
  if __name__ == "__main__":
143
- iface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
 
1
  import os
2
  from pathlib import Path
3
  import torch
 
4
  from transformers import AutoConfig, AutoTokenizer
5
  from optimum.intel.openvino import OVModelForCausalLM
6
  import openvino as ov
 
14
  # Initialize model language options
15
  model_languages = list(SUPPORTED_LLM_MODELS)
16
 
17
+ # Helper function to retrieve model configuration and path
18
+ def get_model_path(model_language_value, model_id_value):
19
+ model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
20
+ pt_model_name = model_id_value.split("-")[0]
21
+ int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
22
+ return model_configuration, int4_model_dir, pt_model_name
23
+
24
+ # Download the model if not already present
25
+ def download_model_if_needed(model_language_value, model_id_value):
26
+ model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
27
+ int4_weights = int4_model_dir / "openvino_model.bin"
28
+ if not int4_weights.exists():
29
+ print(f"Downloading model {model_id_value}...")
30
+ # Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
31
+ return int4_model_dir
32
+
33
+ # Load the model based on selected options
34
+ def load_model(model_language_value, model_id_value, device):
35
+ int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
36
+ ov_config = {
37
+ hints.performance_mode(): hints.PerformanceMode.LATENCY,
38
+ streams.num(): "1",
39
+ props.cache_dir(): ""
40
+ }
41
+ core = ov.Core()
42
+ tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
43
+ ov_model = OVModelForCausalLM.from_pretrained(
44
+ int4_model_dir,
45
+ device=device,
46
+ ov_config=ov_config,
47
+ config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
48
+ trust_remote_code=True
49
+ )
50
+ return tok, ov_model
51
+
52
+ # Define the function to generate responses
53
+ def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value, device):
54
+ tok, ov_model = load_model(model_language_value, model_id_value, device)
55
+
56
+ def convert_history_to_token(history):
57
+ input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
58
+ return input_tokens
59
+
60
+ input_ids = convert_history_to_token(history)
61
+ generate_kwargs = dict(
62
+ input_ids=input_ids,
63
+ max_new_tokens=256,
64
+ temperature=temperature,
65
+ top_p=top_p,
66
+ top_k=top_k,
67
+ repetition_penalty=repetition_penalty
68
+ )
69
+
70
+ # Stream response to textbox
71
+ response = ""
72
+ for new_text in ov_model.generate(**generate_kwargs):
73
+ response += new_text
74
+ history[-1][1] = response
75
+ yield history
76
+
77
  # Define Gradio interface within a Blocks context
78
  with gr.Blocks() as iface:
79
  # Dropdown for model language selection
 
90
  value=None
91
  )
92
 
93
+ # Update model_id choices when model_language changes
94
  def update_model_id(model_language_value):
95
  model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
96
  return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
97
 
 
98
  model_language.change(update_model_id, inputs=model_language, outputs=model_id)
99
 
100
  # Checkbox for INT4 model preparation
 
117
  label="Device"
118
  )
119
 
120
+ # Sliders for model generation parameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
122
  top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
123
  top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
 
126
  # Conversation history state
127
  history = gr.State([])
128
 
129
+ # Textbox for conversation history
130
+ conversation_output = gr.Textbox(label="Conversation History")
131
+
132
+ # Button to trigger response generation
133
+ generate_button = gr.Button("Generate Response")
134
+
135
+ # Define action when button is clicked
136
+ generate_button.click(
137
+ generate_response,
138
+ inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id, device],
139
+ outputs=[conversation_output, history]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  )
141
 
142
  # Launch the Gradio app
143
  if __name__ == "__main__":
144
+ iface.launch(debug=True, server_name="0.0.0.0", server_port=7860)