Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
import torch
|
4 |
-
from threading import Event, Thread
|
5 |
from transformers import AutoConfig, AutoTokenizer
|
6 |
from optimum.intel.openvino import OVModelForCausalLM
|
7 |
import openvino as ov
|
@@ -15,6 +14,66 @@ from llm_config import SUPPORTED_LLM_MODELS
|
|
15 |
# Initialize model language options
|
16 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Define Gradio interface within a Blocks context
|
19 |
with gr.Blocks() as iface:
|
20 |
# Dropdown for model language selection
|
@@ -31,12 +90,11 @@ with gr.Blocks() as iface:
|
|
31 |
value=None
|
32 |
)
|
33 |
|
34 |
-
#
|
35 |
def update_model_id(model_language_value):
|
36 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
37 |
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
|
38 |
|
39 |
-
# Update model_id choices when model_language changes
|
40 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
41 |
|
42 |
# Checkbox for INT4 model preparation
|
@@ -59,42 +117,7 @@ with gr.Blocks() as iface:
|
|
59 |
label="Device"
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
-
def get_model_path(model_language_value, model_id_value):
|
64 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
65 |
-
pt_model_name = model_id_value.split("-")[0]
|
66 |
-
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
67 |
-
return model_configuration, int4_model_dir, pt_model_name
|
68 |
-
|
69 |
-
# Function to download the model if not already present
|
70 |
-
def download_model_if_needed(model_language_value, model_id_value):
|
71 |
-
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
72 |
-
int4_weights = int4_model_dir / "openvino_model.bin"
|
73 |
-
if not int4_weights.exists():
|
74 |
-
print(f"Downloading model {model_id_value}...")
|
75 |
-
# Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
|
76 |
-
return int4_model_dir
|
77 |
-
|
78 |
-
# Load the model based on selected options
|
79 |
-
def load_model(model_language_value, model_id_value):
|
80 |
-
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
81 |
-
ov_config = {
|
82 |
-
hints.performance_mode(): hints.PerformanceMode.LATENCY,
|
83 |
-
streams.num(): "1",
|
84 |
-
props.cache_dir(): ""
|
85 |
-
}
|
86 |
-
core = ov.Core()
|
87 |
-
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
|
88 |
-
ov_model = OVModelForCausalLM.from_pretrained(
|
89 |
-
int4_model_dir,
|
90 |
-
device=device.value,
|
91 |
-
ov_config=ov_config,
|
92 |
-
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
|
93 |
-
trust_remote_code=True
|
94 |
-
)
|
95 |
-
return tok, ov_model
|
96 |
-
|
97 |
-
# Gradio sliders for model generation parameters
|
98 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
99 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
100 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
@@ -103,41 +126,19 @@ with gr.Blocks() as iface:
|
|
103 |
# Conversation history state
|
104 |
history = gr.State([])
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
input_ids=input_ids,
|
118 |
-
max_new_tokens=256,
|
119 |
-
temperature=temperature,
|
120 |
-
top_p=top_p,
|
121 |
-
top_k=top_k,
|
122 |
-
repetition_penalty=repetition_penalty
|
123 |
-
)
|
124 |
-
|
125 |
-
# Stream response to textbox
|
126 |
-
response = ""
|
127 |
-
for new_text in ov_model.generate(**generate_kwargs):
|
128 |
-
response += new_text
|
129 |
-
history[-1][1] = response
|
130 |
-
yield history
|
131 |
-
|
132 |
-
# Set up the interface with inputs and outputs
|
133 |
-
iface = gr.Interface(
|
134 |
-
fn=generate_response,
|
135 |
-
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id],
|
136 |
-
outputs=[gr.Textbox(label="Conversation History"), history],
|
137 |
-
live=True,
|
138 |
-
title="OpenVINO Chatbot"
|
139 |
)
|
140 |
|
141 |
# Launch the Gradio app
|
142 |
if __name__ == "__main__":
|
143 |
-
iface.launch(debug=True,
|
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
import torch
|
|
|
4 |
from transformers import AutoConfig, AutoTokenizer
|
5 |
from optimum.intel.openvino import OVModelForCausalLM
|
6 |
import openvino as ov
|
|
|
14 |
# Initialize model language options
|
15 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
16 |
|
17 |
+
# Helper function to retrieve model configuration and path
|
18 |
+
def get_model_path(model_language_value, model_id_value):
|
19 |
+
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
20 |
+
pt_model_name = model_id_value.split("-")[0]
|
21 |
+
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
22 |
+
return model_configuration, int4_model_dir, pt_model_name
|
23 |
+
|
24 |
+
# Download the model if not already present
|
25 |
+
def download_model_if_needed(model_language_value, model_id_value):
|
26 |
+
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
27 |
+
int4_weights = int4_model_dir / "openvino_model.bin"
|
28 |
+
if not int4_weights.exists():
|
29 |
+
print(f"Downloading model {model_id_value}...")
|
30 |
+
# Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
|
31 |
+
return int4_model_dir
|
32 |
+
|
33 |
+
# Load the model based on selected options
|
34 |
+
def load_model(model_language_value, model_id_value, device):
|
35 |
+
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
36 |
+
ov_config = {
|
37 |
+
hints.performance_mode(): hints.PerformanceMode.LATENCY,
|
38 |
+
streams.num(): "1",
|
39 |
+
props.cache_dir(): ""
|
40 |
+
}
|
41 |
+
core = ov.Core()
|
42 |
+
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
|
43 |
+
ov_model = OVModelForCausalLM.from_pretrained(
|
44 |
+
int4_model_dir,
|
45 |
+
device=device,
|
46 |
+
ov_config=ov_config,
|
47 |
+
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
return tok, ov_model
|
51 |
+
|
52 |
+
# Define the function to generate responses
|
53 |
+
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value, device):
|
54 |
+
tok, ov_model = load_model(model_language_value, model_id_value, device)
|
55 |
+
|
56 |
+
def convert_history_to_token(history):
|
57 |
+
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
58 |
+
return input_tokens
|
59 |
+
|
60 |
+
input_ids = convert_history_to_token(history)
|
61 |
+
generate_kwargs = dict(
|
62 |
+
input_ids=input_ids,
|
63 |
+
max_new_tokens=256,
|
64 |
+
temperature=temperature,
|
65 |
+
top_p=top_p,
|
66 |
+
top_k=top_k,
|
67 |
+
repetition_penalty=repetition_penalty
|
68 |
+
)
|
69 |
+
|
70 |
+
# Stream response to textbox
|
71 |
+
response = ""
|
72 |
+
for new_text in ov_model.generate(**generate_kwargs):
|
73 |
+
response += new_text
|
74 |
+
history[-1][1] = response
|
75 |
+
yield history
|
76 |
+
|
77 |
# Define Gradio interface within a Blocks context
|
78 |
with gr.Blocks() as iface:
|
79 |
# Dropdown for model language selection
|
|
|
90 |
value=None
|
91 |
)
|
92 |
|
93 |
+
# Update model_id choices when model_language changes
|
94 |
def update_model_id(model_language_value):
|
95 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
96 |
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
|
97 |
|
|
|
98 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
99 |
|
100 |
# Checkbox for INT4 model preparation
|
|
|
117 |
label="Device"
|
118 |
)
|
119 |
|
120 |
+
# Sliders for model generation parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
122 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
123 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
|
|
126 |
# Conversation history state
|
127 |
history = gr.State([])
|
128 |
|
129 |
+
# Textbox for conversation history
|
130 |
+
conversation_output = gr.Textbox(label="Conversation History")
|
131 |
+
|
132 |
+
# Button to trigger response generation
|
133 |
+
generate_button = gr.Button("Generate Response")
|
134 |
+
|
135 |
+
# Define action when button is clicked
|
136 |
+
generate_button.click(
|
137 |
+
generate_response,
|
138 |
+
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id, device],
|
139 |
+
outputs=[conversation_output, history]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
|
142 |
# Launch the Gradio app
|
143 |
if __name__ == "__main__":
|
144 |
+
iface.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|