Spaces:
Runtime error
Runtime error
SauravMaheshkar
commited on
Commit
•
bfd8285
1
Parent(s):
ca1a0ac
feat: add initial template
Browse files- .gitattributes +1 -0
- app.py +52 -0
- bin/dino.index +3 -0
- bin/model.ckpt +3 -0
- model.py +159 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -6,6 +6,7 @@
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
10 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
11 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
12 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from faiss import read_index
|
5 |
+
from PIL import Image, ImageOps
|
6 |
+
from datasets import load_dataset
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from torchvision.models import resnet50
|
9 |
+
|
10 |
+
from model import DINO
|
11 |
+
|
12 |
+
transforms = T.Compose(
|
13 |
+
[T.ToTensor(), T.Resize(244), T.CenterCrop(224), T.Normalize([0.5], [0.5])]
|
14 |
+
)
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
datset = load_dataset("ethz/food101")
|
19 |
+
|
20 |
+
model = DINO(batch_size_per_device=32, num_classes=1000).to(device)
|
21 |
+
model.load_state_dict(torch.load("./bin/model.ckpt", map_location=device)["state_dict"])
|
22 |
+
|
23 |
+
|
24 |
+
def augment(img, transforms=transforms) -> torch.Tensor:
|
25 |
+
img = Image.fromarray(img)
|
26 |
+
if img.mode == "L":
|
27 |
+
# Convert grayscale image to RGB by duplicating the single channel three times
|
28 |
+
img = ImageOps.colorize(img, black="black", white="white")
|
29 |
+
return transforms(img).unsqueeze(0)
|
30 |
+
|
31 |
+
|
32 |
+
def search_index(input_image, k: int):
|
33 |
+
with torch.no_grad():
|
34 |
+
embedding = model(augment(input_image))
|
35 |
+
index = read_index("./bin/dino.index")
|
36 |
+
_, I = index.search(np.array(embedding[0].reshape(1, -1)), k)
|
37 |
+
indices = I[0]
|
38 |
+
answer = ""
|
39 |
+
for i, index in enumerate(indices[:3]):
|
40 |
+
answer += index
|
41 |
+
# retrieved_img = dataset["train"][int(index)]["image"]
|
42 |
+
return answer
|
43 |
+
|
44 |
+
|
45 |
+
app = gr.Interface(
|
46 |
+
search_index,
|
47 |
+
inputs=[gr.Image(), gr.Slider(value=3, minimum=1, step=1)],
|
48 |
+
outputs="text",
|
49 |
+
)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
app.launch()
|
bin/dino.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19ebbf3848fc84c63cc7a50cc2e26a82a99018a3be2558ea4cca50b5f14f273d
|
3 |
+
size 620544045
|
bin/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ab95b4201d663ba01d8fbc19643b99d4cccbf459ff10ca8455fa226950fd0f1
|
3 |
+
size 608315727
|
model.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from pytorch_lightning import LightningModule
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn import Identity
|
6 |
+
from torchvision.models import resnet50
|
7 |
+
|
8 |
+
from lightly.loss import DINOLoss
|
9 |
+
from lightly.models.modules import DINOProjectionHead
|
10 |
+
from lightly.models.utils import (
|
11 |
+
activate_requires_grad,
|
12 |
+
deactivate_requires_grad,
|
13 |
+
get_weight_decay_parameters,
|
14 |
+
update_momentum,
|
15 |
+
)
|
16 |
+
from lightly.transforms import DINOTransform
|
17 |
+
from lightly.utils.benchmarking import OnlineLinearClassifier
|
18 |
+
from lightly.utils.scheduler import CosineWarmupScheduler, cosine_schedule
|
19 |
+
|
20 |
+
from typing import Union, Tuple, List
|
21 |
+
|
22 |
+
|
23 |
+
class DINO(LightningModule):
|
24 |
+
def __init__(self, batch_size_per_device: int, num_classes: int) -> None:
|
25 |
+
super().__init__()
|
26 |
+
self.save_hyperparameters()
|
27 |
+
self.batch_size_per_device = batch_size_per_device
|
28 |
+
|
29 |
+
resnet = resnet50()
|
30 |
+
resnet.fc = Identity() # Ignore classification head
|
31 |
+
self.backbone = resnet
|
32 |
+
self.projection_head = DINOProjectionHead(freeze_last_layer=1)
|
33 |
+
self.student_backbone = copy.deepcopy(self.backbone)
|
34 |
+
self.student_projection_head = DINOProjectionHead()
|
35 |
+
self.criterion = DINOLoss(output_dim=65536)
|
36 |
+
|
37 |
+
self.online_classifier = OnlineLinearClassifier(num_classes=num_classes)
|
38 |
+
|
39 |
+
def forward(self, x: Tensor) -> Tensor:
|
40 |
+
return self.backbone(x)
|
41 |
+
|
42 |
+
def forward_student(self, x: Tensor) -> Tensor:
|
43 |
+
features = self.student_backbone(x).flatten(start_dim=1)
|
44 |
+
projections = self.student_projection_head(features)
|
45 |
+
return projections
|
46 |
+
|
47 |
+
def on_train_start(self) -> None:
|
48 |
+
deactivate_requires_grad(self.backbone)
|
49 |
+
deactivate_requires_grad(self.projection_head)
|
50 |
+
|
51 |
+
def on_train_end(self) -> None:
|
52 |
+
activate_requires_grad(self.backbone)
|
53 |
+
activate_requires_grad(self.projection_head)
|
54 |
+
|
55 |
+
def training_step(
|
56 |
+
self, batch: Tuple[List[Tensor], Tensor, List[str]], batch_idx: int
|
57 |
+
) -> Tensor:
|
58 |
+
# Momentum update teacher.
|
59 |
+
momentum = cosine_schedule(
|
60 |
+
step=self.trainer.global_step,
|
61 |
+
max_steps=self.trainer.estimated_stepping_batches,
|
62 |
+
start_value=0.996,
|
63 |
+
end_value=1.0,
|
64 |
+
)
|
65 |
+
update_momentum(self.student_backbone, self.backbone, m=momentum)
|
66 |
+
update_momentum(self.student_projection_head, self.projection_head, m=momentum)
|
67 |
+
|
68 |
+
views, targets = batch[0], batch[1]
|
69 |
+
global_views = torch.cat(views[:2])
|
70 |
+
local_views = torch.cat(views[2:])
|
71 |
+
|
72 |
+
teacher_features = self.forward(global_views).flatten(start_dim=1)
|
73 |
+
teacher_projections = self.projection_head(teacher_features)
|
74 |
+
student_projections = torch.cat(
|
75 |
+
[self.forward_student(global_views), self.forward_student(local_views)]
|
76 |
+
)
|
77 |
+
|
78 |
+
loss = self.criterion(
|
79 |
+
teacher_out=teacher_projections.chunk(2),
|
80 |
+
student_out=student_projections.chunk(len(views)),
|
81 |
+
epoch=self.current_epoch,
|
82 |
+
)
|
83 |
+
self.log_dict(
|
84 |
+
{"train_loss": loss, "ema_momentum": momentum},
|
85 |
+
prog_bar=True,
|
86 |
+
sync_dist=True,
|
87 |
+
batch_size=len(targets),
|
88 |
+
)
|
89 |
+
|
90 |
+
# Online classification.
|
91 |
+
cls_loss, cls_log = self.online_classifier.training_step(
|
92 |
+
(teacher_features.chunk(2)[0].detach(), targets), batch_idx
|
93 |
+
)
|
94 |
+
self.log_dict(cls_log, sync_dist=True, batch_size=len(targets))
|
95 |
+
return loss + cls_loss
|
96 |
+
|
97 |
+
def validation_step(
|
98 |
+
self, batch: Tuple[Tensor, Tensor, List[str]], batch_idx: int
|
99 |
+
) -> Tensor:
|
100 |
+
images, targets = batch[0], batch[1]
|
101 |
+
features = self.forward(images).flatten(start_dim=1)
|
102 |
+
cls_loss, cls_log = self.online_classifier.validation_step(
|
103 |
+
(features.detach(), targets), batch_idx
|
104 |
+
)
|
105 |
+
self.log_dict(cls_log, prog_bar=True, sync_dist=True, batch_size=len(targets))
|
106 |
+
return cls_loss
|
107 |
+
|
108 |
+
def configure_optimizers(self):
|
109 |
+
# Don't use weight decay for batch norm, bias parameters, and classification
|
110 |
+
# head to improve performance.
|
111 |
+
params, params_no_weight_decay = get_weight_decay_parameters(
|
112 |
+
[self.student_backbone, self.student_projection_head]
|
113 |
+
)
|
114 |
+
# For ResNet50 we use SGD instead of AdamW/LARS as recommended by the authors:
|
115 |
+
# https://github.com/facebookresearch/dino#resnet-50-and-other-convnets-trainings
|
116 |
+
optimizer = SGD(
|
117 |
+
[
|
118 |
+
{"name": "dino", "params": params},
|
119 |
+
{
|
120 |
+
"name": "dino_no_weight_decay",
|
121 |
+
"params": params_no_weight_decay,
|
122 |
+
"weight_decay": 0.0,
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"name": "online_classifier",
|
126 |
+
"params": self.online_classifier.parameters(),
|
127 |
+
"weight_decay": 0.0,
|
128 |
+
},
|
129 |
+
],
|
130 |
+
lr=0.03 * self.batch_size_per_device * self.trainer.world_size / 256,
|
131 |
+
momentum=0.9,
|
132 |
+
weight_decay=1e-4,
|
133 |
+
)
|
134 |
+
scheduler = {
|
135 |
+
"scheduler": CosineWarmupScheduler(
|
136 |
+
optimizer=optimizer,
|
137 |
+
warmup_epochs=int(
|
138 |
+
self.trainer.estimated_stepping_batches
|
139 |
+
/ self.trainer.max_epochs
|
140 |
+
* 10
|
141 |
+
),
|
142 |
+
max_epochs=int(self.trainer.estimated_stepping_batches),
|
143 |
+
),
|
144 |
+
"interval": "step",
|
145 |
+
}
|
146 |
+
return [optimizer], [scheduler]
|
147 |
+
|
148 |
+
def configure_gradient_clipping(
|
149 |
+
self,
|
150 |
+
optimizer,
|
151 |
+
gradient_clip_val: Union[int, float, None] = None,
|
152 |
+
gradient_clip_algorithm: Union[str, None] = None,
|
153 |
+
) -> None:
|
154 |
+
self.clip_gradients(
|
155 |
+
optimizer=optimizer,
|
156 |
+
gradient_clip_val=3.0,
|
157 |
+
gradient_clip_algorithm="norm",
|
158 |
+
)
|
159 |
+
self.student_projection_head.cancel_last_layer_gradients(self.current_epoch)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
faiss-cpu
|
3 |
+
gradio
|
4 |
+
lightly
|
5 |
+
lightning
|
6 |
+
numpy
|
7 |
+
Pillow
|
8 |
+
torchvision
|